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Chapter 1
Executive Summary

The research project undertaken under this effort has two major components. In the first one, we
investigate the Bayesian inference theory and its application to research problems ranging from
distributed detection with multiple sensors, clutter scene characterization and clutter patch iden-
tification for airborne radar systems, and adaptive CFAR detection with heterogeneous clutters.
In the second part, multichannel radar detection algorithms were developed that were particularly
suitable for airborne radar surveillence systems operating in a complex clutter/interference/noise
environment. Several major tasks have been carried out under these two components, all of them
tackle problems that are of great relevance and importance to the United States Air Force. Sig-
nificant progress has been made in both fronts and the research work has been well recognized as
evidenced by publications of the results on peer-reviewed leading journals in the relevant areas. In
all, three journal papers have been published with one more paper currently under revision. All
of these papers are in the prestigious IEEE Transactions, the most authoritative journals in the
respective technical areas. In addition, numerous papers were published and presented in many
leading technical conferences. Some of them have already been cited by other researchers working

in similar areas.



Chapter 2

Introduction

In this report, we present results obtained from research effort supported by AFRL through Cor-
porative Agreement: # F30602-01-2-0525. There are two major thrusts under this effort: the first
one (Chapters 3 through 5) is the application of modern Bayesian inference tools to radar signal
processing ranging from multi-sensor detection, to clutter scene identification, to CFAR detection
in the presence of clutter-edge heterogeneity. In the second part (Chapters 6 and 7), multi-channel
radar detection problem has been addressed using classical detection theory and a new generalized
likelihood ratio test statistic that can deal with the presence of both clutter and noise is proposed.

Data fusion and distributed detection have been studied extensively and numerous results have
been obtained during the past two decades. In Chapter 3 the design of fusion rule for distributed
detection problems is reexamined and a novel approach using Bayesian inference tools is proposed.
Specifically, the decision fusion problem is reformulated using hierarchical models and a Gibbs
sampler is proposed to perform posterior probability based fusion. Performance wise, it is essentially
identical to the optimal likelihood based fusion rule whenever it exists. The true merit of this
approach is its applicability to various complex situations, e.g., in dealing with unknown signal/noise
statistics where likelihood based fusion rule may not be easy to obtain or may not even exist.

Radar CFAR detection is addressed in Chapter 4. Motivated by the frequently encountered
problem of clutter-edge heterogeneity, we model the secondary data as a probability mixture and
impose a hierarchical model for the inference problem. A two-stage CFAR detector stucture is
proposed. Empirical Bayesian inference is adopted in the first stage for training data selection
followed by a CFAR processor using the identified homogeneous training set for target detection.
One of the advantages of the proposed algorithm is its inherent adaptivity; i.e., the threshold
setting is much less sensitive to the nonstationary environment compared with other standard
CFAR procedures.

In Chapter 5, we address the problem of clutter patch identification based on Markov random
field (MRF) models. MRF has long been recognized by the image processing community to be
an accurate model to describe a variety of image characteristics such as texture. Here, we use
the MRF to model clutter patch characteristics, captured by a radar receiver or radar imagery

equipment, due to the fact that clutter patches usually occur in connected regions. Furthermore,



we assume that observations inside each clutter patch are homogenous, i.e., observations follow a
single probability distribution. We use the Metropolis-Hasting algorithm and the reversible jump
Markov chain algorithm to search for solutions based on the Maximum a Posteriori (M AP) criterion.
Several examples are provided to illustrate the performance of our algorithm.

Chapter 6 studies multi-channel radar detection in the presence of both Gaussian and non-
Gaussian disturbance. We develop maximum likelihood parameter estimates for spherically invari-
ant random processes (SIRP) in the presence of white Gaussian noise. Both cases with known
and unknown white noise variance are treated. As the estimators do not admit closed-form so-
lutions, numerical iterative procedures are developed that are guaranteed to at least converge to
the local maximum. The developed estimate allows us to construct a generalized likelihood ratio
test (GLRT) for the detection of a signal with constant but unknown amplitude embedded in both
Gaussian noise and SIRP disturbances. This new GLRT compares favorably to existing detection
schemes that neglect the existence of white Gaussian noise.

Compound-Gaussian processes have found important applications in modeling clutter returns
for high-resolution radar. In the last chapter we develop a maximum likelihood estimate for the
covariance structure of a compound Gaussian process. The performance of the covariance matrix
estimator is then evaluated in the context of adaptive radar detection. Through extensive numerical
simulation and by using a popular CFAR detector for coherent pulse train detection in non-Gaussian
clutter, we show that the proposed estimator provides better detection performance over existing

covariance matrix estimators



Chapter 3

A Bayesian Sampling Approach to

Decision Fusion

Data fusion and distributed detection have been studied extensively and numerous results have
been obtained during the past two decades. In this chapter the design of fusion rule for distributed
detection problems is reexamined and a novel approach using Bayesian inference tools is proposed.
Specifically, the decision fusion problem is reformulated using hierarchical models and a Gibbs
sampler is proposed to perform posterior probability based fusion. Performance wise, it is essentially
identical to the optimal likelihood based fusion rule whenever it exists. The true merit of this
approach is its applicability to various complex situations, e.g., in dealing with unknown signal/noise

statistics where likelihood based fusion rule may not be easy to obtain or may not even exist.

3.1 Introduction

Data fusion refers to the inference problem where data are gathered from distributed agents and
are processed collectively at a fusion center. Fig. 3.1 is a simple illustration of a data fusion system,
where data generated by some underlying phenomenon and collected at local agents are trans-
mitted, with possible preprocessing, to a central processor where inference about the underlying
phenomenon and any ensuing decisions are to be made. Extensive research has been conducted in
the past two decades and is documented in [1-3].

The problem of interest in this chapter is distributed detection, and in particular, the fusion
of decisions from local sensors. Spurred by many real world problems, many of them related
to military surveillance applications, distributed detection has been vigorously studied and many
fundamental results have been obtained in this area [1,2]. Performance wise, it is desirable for the
local detectors to send the raw data to the fusion center, where the problem of interest is often
termed as pre-detection fusion [4]. Such an approach usually yields optimal detection performance
as there is no information loss at the local sensor. However, in practical situations, the sensors
are scattered and are often located far away from the fusion center. The information that can

be transferred from the sensors to the fusion center is, therefore, limited by the communication
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Figure 3.1: Data fusion problem

channel and other practical considerations. These limitations often mandate that the observations
at local sensors be processed (compressed) prior to being sent out to the fusion center. The need
for local processing greatly complicates the problem. In fact, the majority of the literature deals
with the optimization of local decision rules, which is often times coupled with the fusion rule,
by applying various classical inference tools, such as the Neyman-Pearson criterion and Bayesian
detection theory. The success of classical statistical inference methods, however, depends largely
on some simplifying assumptions that are often not valid in practice.

In certain situations, however, it may be desirable to consider the design of fusion rules in-
dependent of the local decision rules. For example, it may not always be practical to constantly
adapt the local decision rule according to a changing environment. For a set of fixed local decision
rules, Chair and Varshney [5] proved that the optimal fusion rule based on the data received from
the sensors is a weighted sum of local decisions provided the performance indices (in terms of false
alarm rate and probability of detection) of local detectors are available. Similar results exist for
soft output (multibit quantization) from local sensors [2]. Without the conditional independence
assumption, however, the fusion rule is much more complicated and results are usually limited to
the case of hard decisions at the local output [6-8]. More general results about distributed detection
for spatially correlated observations are also available, see, e.g., [9]. Notice that the above work
requires explicit knowledge of the performance of each local detector which is not possible when
the signal and/or noise statistics are not completely known.

We propose in this chapter a novel approach using Bayesian sampling to attack the decision
fusion problem. The approach is readily applicable to much more complex situations where the
classical approach will either fail or become too complicated to carry out, such as problems in-

volving unknown signal/noise statistics, and possibly sensors with dependent observations. A key



observation in applying Bayesian inference to distributed detection is to recognize the enormous
resemblance between hierarchical models and distributed detection problems. Hierarchical models
are applicable to problems where parameters and/or observations interact (in the form of condi-
tional probability) through a certain hierarchical structure. Fig. 3.1 clearly suggests that such a
hierarchy exists for the data fusion problem. A hierarchical model is “Bayesian friendly” because its
structured dependence among variates allows easy calculation of conditional probabilities. Under
the Bayesian inference framework, unknown parameters associated with the model are assumed
random with a suitable prior (often chosen to be vague, or non informative) and the aim is to
obtain the posterior distribution of those parameters that are of interest. Notice here the term
‘Bayesian’ has a different meaning than that in Bayesian detection theory. In Bayesian detection
theory, each different hypothesis is assigned a prior probability which is assumed fized and known
and the ensuing inference procedure is classical in essence. In the true Bayesian inference paradigm,
all the parameters involved, including the prior probabilities on different hypotheses, are assumed

random and the goal is to obtain the posterior probability of every unknown parameter.

3.2 Hierarchical modeling and Gibbs sampler for decision fusion

3.2.1 Hierarchical modeling for binary detection

Hierarchical models (HM) are best suited to describe situations where observations and/or param-
eters can be related or connected to each other through a hierarchical structure. A well-known
application is in problems involving exchangeable parameters/variables — they come from a com-
mon population distribution yet their order, or index, does not carry any information [10]. In the
sensor fusion problem, for example, the order, or labeling, of the sensors is irrelevant to the inference
task at hand. This exchangeability allows us to link the set of parameters together by assuming
a common population distribution for them, thus creating the top of the pyramid upon which a
hierarchical model can be built. We mention here that although modeling based on exchangeability
is a prominent example for the application of hierarchical models, it is not a requisite for HM to
be useful.

Specification of a hierarchical model usually involves two steps. The first is to understand the
physical phenomenon and the associated dependence structure. This enables us to construct a
hierarchical model that reasonably approximates the physical meaning of the underlying problem.
The proposed model should incorporate those unknown parameters that are relevant to the inference
task and clearly describe the dependence structure among these parameters. This step often involves
some necessary approximations — an accurate characterization of a complex system may be either
impossible to obtain or too complicated to work with. The second involves selection of the priors
for all the random parameters involved in the hierarchical model. While specification of the priors
is often considered subjective in the absence of a prior: information, there are established rules
and theory that can serve as a guideline to select a prior to avoid subjectivism [11]. A prominent

example of is Jeffreys’ rule [12] that is based on the invariance of Fisher information and often



results in priors that are conceptually vague, or non informative.

In reference to Fig. 3.1, we see that the local decisions u;’s are functions of local observations
x;’s, which in turn come from distributions dictated by a common underlying phenomenon. This is
precisely the type of hierarchical structure that we discussed earlier where parameters/observations
interact with each other in the form of conditional probabilities through a layered structure. There-
fore we notice a natural relationship between decision fusion and hierarchical models. This is further
elaborated below.

We define, for binary hypothesis testing, a random variable Z:

7 0 if Hy is true.
] 1 if Hy is true.

The inference on the underlying hypothesis is now converted to inference on the random variable Z.
Under the Bayesian inference framework, Z is most commonly assumed to be a Bernoulli random
variable with success probability 6. Notice the subtle difference from Bayesian detection theory:
In Bayesian detection theory, Z is assigned a fixed prior on each hypothesis, which may be hard to
determine or justify in practice. Here, the success probability € is not fixed, but rather is assigned
a prior that makes it more robust in practice. For conjugacy*, we assume a beta prior for . We
make a note here that the uniform distribution, which is conceptually the most vague prior is a
special case of beta distribution.

Given Z, the underlying hypothesis, the local observations X;’s can be specified by conditional
probabilities depending on the value of Z. The last layer of the hierarchy consists of the local
decision rules, which are assumed to be fixed here, and whose outputs, denoted by U = (Uy,---,Uy,)
(c.f. Fig. 3.2), are the observations at the fusion center where a final decision is to be made. The
joint distribution of all the parameters involved, under the hierarchical model assumption, is easily
obtained as

£(6,2,X,0) = £(8)P(218)(X|Z)u—y(x) (3.1)

where Iyy_g(x) is the indicator function defined as

I )1 IfU= 9(X).
U=g(X) = 0 Otherwise.

The hierarchical model for the decision fusion problem is shown in Fig. 3.2. We describe each layer

in the hierarchical model as follows.

e Prior on & — For conjugacy, it is most convenient to choose the prior for 6 as beta(c, 3)

distribution. The resulting posterior of 6 given Z is then also a beta distribution given

*Conjugacy refers to the situation where prior and posterior follow the same type of distribution. For example, in
the current situation, given that the likelihood (probability distribution of Z given ) is a Bernoulli random variable,
beta prior on € will result in a posterior probability of & also in the form of beta distribution with different parameters.
Although conjugacy is not necessary in theory for the Bayesian inference framework to work, it nonetheless is more
convenient to work with and often times proves to be very robust. Adding a hyper prior layer may further mitigate

the concerns about robustness.
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Figure 3.2: Reformulation of the distributed detection problem using a hierarchical model

that Z is a Bernoulli random variable. For simplicity and non-informativeness, we choose
a = B =1 in our simulations which reduces the beta distribution to a uniform distribution.
An alternative approach is to choose hyper priors for «, 3 to allow more modeling flexibility

and increased robustness [10,13].
e First level — Z is assumed a Bernoulli random variable with success probability 6.

e Second level — It represents the likelihood function. Given Z, we should be able to calibrate
probabilistically the input to the local sensors in terms of f(X|Z) where X includes observa-
tions at all sensors. Notice here that there is no restriction as to the form of the likelihood.
Therefore, it should be possible to extend this framework to problems involving correlated

observations among local sensors.

e Third level — It represents the local decision stage. A deterministic mapping (quantization)
from the observation to local decision U; = ¢g(X;) is assumed known. The local decision vector

U = [Uy,--,U,] forms the input to the fusion center.

In the present work, we assume conditional independence among different sensor observations.
This assumption simplifies our presentation and is implicitly used in Figure 3.2. Our goal is to

infer about the Bernoulli random variable Z using its posterior probability. From the model, the



posterior probability based inference on Z is equivalent to estimating the posterior mean for 6,

which is precisely the definition of probability of Z being 1.

3.2.2 A Gibbs sampler for decision fusion

Bayesian inferencing aims at finding the posterior probability of the parameters of interest. An-
alytical results are most desirable if they exist. In complex situations where a large number of
parameters are involved, as is the case with hierarchical models, obtaining explicit analytical re-
sults may not be practical. A powerful tool for these problems is the Bayesian sampling approach
that we employ here.

Bayesian sampling approach carries out the inference process by finding the empirical poste-
rior distribution of the parameters of interest. Under this paradigm, samples of these random
parameters are generated that follow the posterior distribution of the parameters conditioned on
the observations. Sampling based approach has long been recognized as a key to the success of
Bayesian inference methods due to the fact that analytical solutions (even analytical approxima-
tions) often fail in complex situations. Various posterior simulation methods have been developed
for Bayesian inferencing, including direct simulation and successive approximation, among others,
see [13]. Although they have attained some success in applications, the direct sampling approach
has encountered enormous difficulty when dealing with complex problems, e.g., problems with high
dimensional parameter sets. This problem is largely solved with the discovery (or more precisely,
the rediscovery) of Markov Chain Monte Carlo (MCMC) methods which are mainly responsible for
the revival and popularity of the Bayesian inference approach since the late eighties [14]. MCMC
circumvents the difficulty of the direct approach by carefully designing a sample trajectory that,
upon convergence, assumes a stationary distribution that follows the desired posterior distribution.

For hierarchical models, Gibbs sampler has proved to be the most efficient and effective among
various MCMC methods. Gibbs sampler, in short, is an iterative sampling scheme where at each
iteration, parameters are sampled alternatively using their full conditional distributions. To il-
lustrate this, assume that we have obtained a joint posterior distribution of all the parameters
involved: f(y1, --,vn|y) where y represents the observations. From the joint posterior, we can

obtain the following full conditional distributions for each parameter:

f('Yl |727’737"'7’7n7y)
f(72 |717737"'77n7y)

f(’Yn | Y1725 77n—17Y)

If we draw samples iteratively according to the above full conditional distributions, then it can be
shown that, under certain regularity conditions, the sample sequence will converge to a distribution
specified by the joint posterior probability of all the parameters [15]. Notice that, in general, each ;
in the above full conditional distribution may contain a subset of the parameters. For a hierarchical

model, conditioned on any particular layer, the variables that belong to the layers above and below



are independent of each other. Therefore the full conditional distributions often reduce to very
simple and low (and often times one) dimensional form that is easy to sample. In the following, a
Gibbs sampler is presented for the hierarchical model for decision fusion described in the previous

section.

o 0
o12.%.0) = polz) = L2 - LETZE (3.2

where under the Bernoulli assumption on Z and beta prior for 8, the above probability is also

a beta random variate — the so-called conjugacy property.

e X
F(X|Z)Iyx)=v

fg(X):U f(x|z)

This follows from the fact that U is a deterministic function of the local observation vector

f(X16,2,U0) = f(X|Z,U) =

X. In the case that g(-) is a threshold rule, the above conditional probability results in a
truncated likelihood function at local sensors.
"7 £6,2,X)  £(6,2,X)
f(Z]6,X,U) = f(Z]0,X) = - = - 3.3
20X =200 =T X)) T 5, 16.2.%) &3)
where f(6,Z,X) = f(0)P(Z]0)f(X]|Z). The above follows from the fact that given X, U and

Z are independent of each other, a direct result of the hierarchical structure.

The Bayesian sampling based fusion rule can be summarized as follows.

Initialization The unknown variables involved are 8, X and Z and the observations are contained
in U. Initial values for the unknown parameters may be chosen arbitrarily. Multiple sampling
paths can be obtained by choosing different initial values for the unknowns. This would
facilitate the monitoring of the convergence of the Gibbs samplers as mentioned later. Notice
that the initial values for X must be chosen such that U = ¢(X), i.e., they need to be
consistent with the sensor output vector according to the local decision rule. We denote the
initial values by 6°, X%, and Z°.

Bayesian sampling This is the step to generate samples for the unknowns that, after convergence,

should follow their respective posterior probability given observations U.

e Given 6!, X!, and Z!, we generate 9!*!, X!*! and Z!*! using the random variable
generator specified by the full conditional distributions in (3.2) through (3.3). Notice
the specification of these full conditional distributions require both the observation U

and the samples at the previous instant, i.e., 8¢, X?, and Z?.

e Increment ¢ and repeat the above sampling procedure until we have obtained 7" samples
where T is a preselected number that is large enough to guarantee the convergence of

the sample path.
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Inference This is the step to obtain the final fusion result. Notice that the previous sampling step
has generated a sequence of samples for 8, that is, #°,01,--- 87, which are assumed to follow

the posterior distribution for . Therefore we use the following decision rule

1 6>0.
0 6<0.5

where 0 is the mean value of the samples for 6, i.e.,

1 T
6= 6°
T 2

t=to+1

where the first ¢ty samples are excluded as they are considered to be in the transient phase of
the Gibbs sampler.

Notice that the parameter 6 is defined as the probability that Z = 1, the above decision fusion rule
is essentially the posterior probability fusion rule using the Bayesian sampling approach.

Some discussion regarding the convergence of the Gibbs sampler are in order. While Markov
process theory [15] guarantees the convergence of a Gibbs sampler, it does not tell exactly when
the convergence will occur. Nonetheless, there are many heuristic ways to check the convergence
of a Gibbs sampler [13, Chapter 11]. For example, one can run multiple Gibbs samplers with
different starting points and monitor the individual sample trajectory. Convergence occurs if all
trajectories start to ‘merge’ with each other. Quantitative convergence measure can also be adopted
for convergence check. For example, if multiple Gibbs samplers are available, the variances of
between- and within-sequence samples of some particular scalar parameters can be used. In this
chapter, since we care mostly about the feasibility of the methodology and performance of the
new approach, we would simply preselect a fixed and large enough iteration number T which can
be determined empirically by simple numerical experiments. Depending on the dimension of the
problem, we may choose smaller T' to reduce the computational complexity in real time applications.

A nice property of the Bayes sampling approach is its plug-in capability — as long as the
probability distribution of local observations and the local decision rules are well defined, we can
simply plug them in the above formulation and crank up the Gibbs sampler. Further, Bayesian
inference approach is advantageous in dealing with signal/noise uncertainties. In the presence of
unknown signal/noise statistics, likelihood based fusion rules have to resort to various means, often
times ad hoc, to deal with the so-called nuisance parameters. This problem, however, is essentially
nonexistent in the Bayesian inference framework — every unknown parameter is assumed random

with a suitable prior, including the nuisance parameters.

3.2.3 Extension to multiple hypothesis testing

We define, for M-ary hypothesis testing, a random variable Z:
1 if Hy is true.
Z=9q 1
M if Hyy is true.

11



The inference on the underlying hypothesis is now converted to inference on the random variate Z.
We assign each hypothesis a prior probability p; (with ), p; = 1) — Z is therefore a single trial
multinomial random variable with success probabilities (p1,---,pap—1) 2 9t. We note here that a
multinomial random variable is a high dimensional generalization of the binomial random variable
of which Bernoulli is a special case with number of trials equal to one. Under Bayesian detection
theory, each p; is assigned a fixed value. Under the Bayesian inference framework, those p;’s are now
assumed random. A clear advantage of the randomness assumption is its robustness against possible
prior mismatch. For the set of p;’s, we further assign a Dirichlet prior for conjugacy [16]. Again,
this is analogous to the binary detection case where a beta prior is used for the Bernoulli variable
7% — Dirichlet random variable is a high dimensional generalization for the beta random variable
which is a natural choice for describing the distribution for probabilities. Given this definition, the
joint distribution of all the parameters involved has the formal representation as in (3.1).

The above hierarchical model is similar to that described in Section 3.2.1 and is detailed below.

e Prior on 6 = (p1,---,pym—1) — Dirichlet with parameters aq,---,ap. Thus

r B i Mo1o @Ml

where I'(-) is the gamma function defined, for real z, as [17, page 942]

(o.¢]
I'(z) :/ et ldt
0

For simplicity and non informativeness, we can choose a3 = - -+ = ajpr = a where « is close to
zero [13]. As before, an alternative approach is to choose hyper priors for a;’s to allow more
modeling flexibility but it may complicate the computation to a certain extent. Again, we
emphasize that Dirichlet prior is a high dimensional generalization of the beta distribution

which is usually used to model the prior for probabilities.

e First level — Z ~ Multinomial(1,0). This is a high dimensional generalization of a Bernoulli

trial.

e Second level — f(X]|Z), the likelihood function. Notice here that the likelihood can be

different from sensor to sensor.
e Third level — U; = ¢g(X;), local decision rule.

This hierarchical model for the multiple hypothesis testing case can be used for the fusion of

classifiers.

tBecause of the constraint >; pi = 1, there are only M — 1 free parameters in the density function for multinomial

random variables.
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3.3 Examples

In this section we present a number of examples to demonstrate the performance of the Bayesian
sampling based fusion rule. Our purpose is two-fold: First we want to show that its performance
is virtually identical to that of the optimal likelihood based fusion rule whenever it exists. Second,
we want to demonstrate that the new fusion method works well in situations where the likelihood
based fusion rule does not exist. For the latter, we choose the scenario where noise uncertainty
exists in terms of unknown noise variance. We present examples both for binary hypothesis testing
and multiple hypothesis testing.

An important issue in the implementation of the Gibbs sampler is the convergence of the sample
sequence, i.e., at what point can we claim that the samples start to follow the posterior probability.
Various means can be used to determine the approximate convergence including monitoring the
convergence of certain scalar parameters. For example, we can use several independent Gibbs sam-
plers with possibly different prior specifications. Approximate convergence occurs when different
sample trajectories start to become ‘indistinguishable’. In our simulation, we use 250 iterations in
the Gibbs sampler and choose the last 200 to calculate the posterior mean of the parameters of
interest, thus preventing the effect of initial transient phase of the Gibbs sampler. The implication
is that convergence occurs usually after 50 iterations. A total of 50,000 Monte Carlo runs are used

in each of the following examples.

3.3.1 Binary detection

Three examples are presented. The first two consider the testing of possible shift in the mean
under different noise statistics, i.e., the problem of detecting a constant amplitude signal observed
in noise. The last example deals with uncertainty in noise variance under the Gaussian assumption.

Ezxample 1 — Gaussian shift in mean

The first example we study is a simple shift in the mean problem under Gaussian noise. Under
Hy, each local observation is assumed to be zero mean Gaussian with variance o2 while under H;
the local observation has a nonzero mean p and is otherwise the same as under Hy. Further we
assume that both p and o2 are known. As for local decisions, we assume that a simple thresholding
with threshold 7 = u/2 is used, i.e.,

0 X;<r7
Ui = 9(Xi) = { ) XZ. . (3.4)
[

Since the observations at the local sensors are independent identically distributed, it is easily seen
that the optimal likelihood based fusion rule relies solely on the sum of u;’s [5].
To develop a Gibbs sampler for this problem, we need to first find the joint posterior distribution

of all the parameters. This can be readily written as

f(6,2,X|0) o« f(0,2,X,U)
= f(0)P(Z]0)f(X|Z)Ty—yx)
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Now we need the full conditional distribution of each random parameter involved. Using the

hierarchical model specified in Section 3.2, we have, for each unknown parameter,
o 0
Fla+p+1)
MNa+2)I(B—2+1)
ie., it is beta(a + Z, 3 — Z + 1). This is so because it is easy to identify that the conditional
probability must be proportional to #*+Z-1(1 — 9)5~Z,

f(612) = 6o (1~ )P

o X,
L o—(@i—p)?/20% | (] _ 5)_L_o—a3/20?
f(Xz | Z Uz) = |:Z 27ro'e T (1 Z)\/ﬂo'e :| Iui:g(wi)
Jui=g(a) [Z o R L z)—ﬂl—wa-e*w?/T’Z] dz;
o Z
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Figure 3.3: ROC curves for different fusion rules for simple Gaussian shift in mean problem
with unit variance. Here the number of sensors is 8 and the mean shift is 1. The

threshold used at each local detector is 0.5.
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In Fig. 3.3, we provide the simulation results on the performance of different fusion rules. Eight
sensors are assumed. The shift in the mean is assumed equal to one with unity noise variance. The
threshold at the local detectors is 0.5. We see that the Bayesian sampling approach has virtually
the same performance as the optimal likelihood based fusion rule, which in this case is simply the
thresholding of the sum of sensor outputs U; because of the symmetry among the sensors [5]. Also
plotted for reference is the ideal ROC curve of pre-detection fusion — the raw observations at local
sensors are assumed available at the fusion center where likelihood based detection is performed.

While performance wise the Bayesian sampling approach does not have any advantage over the
likelihood based fusion rule, and in this particular case, its implementation is much more involved
than the likelihood based fusion rule, we should emphasize here that the true merit of the new
approach is its wide applicability to complex situations where the classical approach based on
conventional detection theory suffers performance degradation or fails to apply.

Ezxample 2 — Different sensor noise statistics

In this example, we investigate the case where different sensors experience different noises. We
choose Gaussian and Laplace (double exponential) as the two noise distributions, and in particular,
we assume that half of the sensors experience Laplace noise while the other half observe Gaussian
noise. Under Hj, the observations are assumed to have zero mean at the local sensors while under
Hy, the observations have mean pu. The scale parameter for Laplacian noise and variance for
Gaussian noise are all assumed known. Again, local decision rules are assumed to be a simple
threshold device.

The likelihood based fusion rule employs a weighted sum of local decisions where the weights
depend on the performance indices (false alarm rate and probability of detection) at the local de-
tectors. In the case of heterogeneous noise statistics, the weights corresponding to different sensors
will be different even if the thresholds at local sensors are chosen to be the same. Consequently,
different threshold values will result in a different set of weights. The Bayesian sampling approach,
on the other hand, is essentially identical to the previous example except that the Gaussian density
function is replaced with Laplace density for half of the observations. Fig. 3.4 shows the simulation
results where 4 = 1 and the scale parameter for Laplacian noise and variance for Gaussian noise
are all chosen to be 1. The number of sensors is 8, hence 4 of them observe Gaussian noise while
the other 4 observe Laplacian noise. The threshold is chosen again to be £/2 and for this threshold,

the likelihood based decision statistic, derived in Appendix A, turns out to be
T(u) = nia + n2b + nge + ngd (3.6)
where
e 14 is the number of sensors that experience Gaussian noise and declare 1;
e n9 is the number of sensors that experience Gaussian noise and declare 0;
e ng is the number of sensors that experience Laplacian noise and declare 1;

e ny4 is the number of sensors that experience Laplacian noise and declare 0;
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e a =122 where a = P[N(0,1) > 0.5] ~ 0.3085;
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Figure 3.4: ROC curves for likelihood based fusion and Bayesian sampling fusion rules for
heterogeneous noise statistics. Here the number of sensors is 8 and the mean shift
is 1. Four out of the 8 sensors observe (Gaussian noise while the other 4 sensors

observe Laplacian noise. The threshold used at each local detector is 0.5.

Clearly from Fig. 3.4, the performance of the Bayesian sampling approach is again virtually
indistinguishable from that of the optimal likelihood based fusion rule.

Ezxample 3 — Multibit local decisions with unknown noise statistics

In the previous examples the local detector makes a simple binary decision which results in a
significant simplification in terms of the likelihood based fusion rule. In situations where multibit
(‘soft’) decisions are available at the local detectors, the optimal likelihood based fusion rule is
more involved. Further, in the previous examples all the statistics of the observations at the local
sensors were assumed known — this is why likelihood based based fusion rule can be obtained in a
straightforward manner. In practice, however, signal and/or noise statistics may not be available
(e.g., they may be time varying). Under this scenario, the likelihood based based scheme does not
apply directly. In fact, because of the limited information available at the fusion center (decen-
tralized and truncated sources), even a generalized likelihood ratio based scheme may not be easy
to obtain. We also note here that if binary decisions are made at the local detectors, then the
uniformly most powerful test exists for this problem even if the noise variance is unknown due to

the monotonicity of the likelihood function at the local sensors.
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Under the Bayesian inferencing framework, however, there is no substantial difficulty in fusing
soft decisions in the presence of signal/noise uncertainty. What needs to be done is to find suitable
priors for the unknown nuisance parameters and incorporate them in the hierarchical model as well
as the Gibbs sampler. Here we use the simple example considered in Example 1 to illustrate the
approach. Again, consider the Gaussian shift in mean except that we assume here the local decision

2

yields 2 bits per observation and the noise variance o° is unknown. Specifically, assume the local

decision is a simple quaternary quantizer with thresholds —0.5,0.5,1.5, i.e.,

0 X;<-05
g1 —0s<xi<05
]2 05<X;<15
3 X;>215
For the unknown variance o2, we choose non informative prior [13], i.e.,
1
2 2
il 3.7
£(0) o< ~o(e?) (3.7

where v(-) is the unit step function!. To facilitate the Gibbs sampler, we need to find the full

conditional distribution for o2 given the specified prior, and we get

f(0*1X,2) o« (63 G]] [ze_(wi_ﬂ)2/202 . z)e—wf/zaz]
i=1
_ (0—2)7(%“)675(%z;;;l(wi,zu)z)

~

which is inverse — gammal(3, % " (@; —zp)?). An alternative approach is to choose a conjugate

prior, that is, we choose the prior for 02 to be inverse-gamma which results in the same form
of posterior for o2. For the Gibbs sampler, all we need is to insert the above full conditional
distribution into the iterative sampling scheme described before. We compare the performance
to the likelihood based fusion rule assuming perfect knowledge of o2. The results are plotted in
Fig. 3.5. Clearly, the Bayesian sampling approach is fairly close to the optimal fusion rule even

when the noise variance is not known.

3.3.2 Mutliple hypotheses

Two examples involving multiple hypothesis testing, and in particular, ternary hypothesis testing,
are given. The first is similar to the binary Gaussian shift in mean example while the second

involves unknown noise variance.

¥Notice that this prior is improper (non-integrable over (0, 00)), therefore it is necessary to check the properness
of the resulting posterior [13]. It turns out however, that the properness is not guaranteed for all possible output
values of U. A trivial modification would be to simply truncate the prior, say, we use

f(UZ) o %v(a2 — US)

where ¢¢ is a small yet positive number. For convenience, we will proceed with the prior in (3.7) as it leads to easy

full conditional probability in our presentation.
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Figure 3.5: ROC curves for various fusion rules for the Gaussian shift in mean problem with
unit variance, assumed unknown at the fusion center. Each local detector provides
quaternary quantization to the fusion center. The true noise variance is assumed
unknown to the Bayesian sampling approach but is assumed known to the

likelihood based fusion rule.

Ezxample 4/ — Gaussian shift in mean

We start with a simple Gaussian-shift-in-mean example — each hypothesis corresponds to
one of three possible mean values of the observations at local sensors which are otherwise assumed
Gaussian with known variance. The joint posterior distribution of all the parameters can be readily

written as

f0,Z=m,X|U) x f(0,Z=m,X,U)
= f(O)P(Z =m|0)f(X|Z = m)y=yx)

+ + ) M-1 ajpy—1
CYl N -1 _1—1
= (o) p Tt p T (1— > Pi) Pm

(xl m)?/202
il[ 271'0 ’ ]H

From this we can derive the full conditional distribution of each parameter as follows

o 0= (pl)"' )pM—l)

Dlog + -+ +am+1) LA
011 aM -1 ap—1— 1

017 =m) = ai—1 am 1-— '

F9] ) = T Tam 1) T ™ P " PM1 ( 213)

e., it is Dirichlet(ay, -, m + 1, -+, apr).
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Lm0,
f(Xi | Z=m,U;) = 1 =
fUi:g(Xi) [me*(wi*lim) /20 ] dy

X;)

° Z 2 2
pm [11, —A—e(®i—hm)*/20
P(Z:m|9,X): i rlz 27“; 2 2
Zk Pk Hi:l %e*(%‘*ﬂk) /20
For simplicity we choose 0> = 1 and M = 3 (ternary hypotheses) with y; = —1, uz = 0, and

13 = 1. The total number of sensors is n = 4. The local decision rule in this case is also assumed
to be a simple ternary quantization rule with quantization thresholds at —0.5 and 0.5. The final
decision (classification) is based on the samples of the posterior probability for (p1,---,par) (with
> pm = 1), and in particular we use the mazimum a posteriori probability decision rule, i.e., we
choose Z = m if the sample mean of p,, is the largest. Performance evaluation is conducted by
simulation. Notice for this simple example, maximum likelihood based fusion rule can be easily
obtained and we skip the details. The results are summarized in Table 1 where each entry is
the classification error probability under each hypothesis. Clearly from the table, the Bayesian

sampling scheme is fairly close to the performance of the likelihood based fusion rule.

‘ True Hypothesis H Bayesian | Likelihood Based

Hy (p=—1) 0.1911 0.1982
Hy (1 =0) 0.4168 0.3529
Hs (un=1) 0.1856 0.1923

Table 3.1: Classification error probability using Bayesian sampling and likelihood based

approaches.

Ezample 5 — Unknown noise variance

In this example, we consider the multiple hypothesis testing problem in the presence of unknown

noise variance. Again, consider an almost identical ternary hypothesis testing problem as above

2 is unknown and the total number of sensors is

2

except that we assume here the noise variance o

n = 8. We choose a non informative prior for the variance o2 as in Section 3.3.1, i.e., f(0?) x

%v(a2). For this prior, the posterior is found to be

F(021X, Z = m) o (02) (31 e o2 (2 Ziba(eipm)?)

n 1\n
202 2ui=
sampling based fusion rule with the likelihood based approach with possible parameter (noise

which is inverse — gammal( (@i — pm)?). We compare the performance of the Bayesian
variance) mismatch. In this example, the true underlying noise variance is assumed to be unity.
In Table 3.2, unity variance is assumed for results presented in rows 1 and 2, while rows 3 and 4
correspond to the likelihood based approach with variance mismatch (o2 is assumed to be 4 and

1/4 respectively). From Table 2, the performance of the Bayesian sampling approach (first row)
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is a lot closer to that of the true likelihood based fusion with perfect knowledge of noise variance

than the likelihood based approaches with parameter mismatch.

True Hypothesis H H, ‘ H, ‘ Hs ‘
Bayesian 0.1023 | 0.3024 | 0.1041

likelihood based with 62 = 1 0.0818 | 0.2601 | 0.0820
likelihood based with 62 =4 | 0.0307 | 0.5027 | 0.0300
likelihood based with 62 = 1/4 || 0.1844 | 0.1135 | 0.1866

Table 3.2: Classification error using Bayesian sampling and likelihood based approach

with possible parameter mismatch. The true noise variance is o = 1.

It is also interesting to see how the Bayesian sampling approach performs when there is a fixed
prior on the hypotheses as assumed in Bayesian detection theory. Here we assume the prior on the
ternary hypotheses to be 0.65, 0.25, and 0.15 respectively. For this case, we know that the optimal
fusion rule is the maximum posterior probability decision rule that minimizes the classification
error probability. We compare the performance of the Bayesian sampling approach with Bayesian
detection theory wusing true prior but with possible noise variance mismatch as it is not known at
the receiver. Clearly, from Table 3 where the classification error probabilities for different methods
are listed, we see while the performance of the Bayesian sampling approach is inferior to the optimal
Bayesian Detection Theory (BDT) using the true noise variance, it certainly is superior to the BDT

using mismatched noise variance.

Bayesian sampling || 0.1548
BDT with 62 =1 | 0.1231
BDT with 62 =4 | 0.1886
BDT with 62 = 1/4 || 0.1676

Table 3.3: Classification error probability using Bayesian sampling and Bayesian

detection theory with possible parameter mismatch.

3.4 Discussion

In this chapter, we proposed a Bayesian sampling approach for decision fusion. To facilitate the use
of Bayesian inference methodology, a hierarchical model was used to reformulate the distributed
detection problem. A Gibbs sampler was designed to obtain the samples of the desired parameters
that follow the posterior probability. The ensuing decision fusion is based on the posterior samples
generated using the Gibbs sampler. Compared with conventional likelihood based fusion rule, the

approach has the following advantages

e Robustness to prior probability assignment. Unlike Bayesian detection theory, we do not need

to assign a specific prior on each hypothesis as they may not be available in practice.
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e Plug in capability — it is equally applicable to different situations encountered in decision
fusion. We expect, from the formulation of the hierarchical model, that the case of correlated
sensor observations can be dealt with under the same framework and will be addressed in
future work. Indeed, assuming that the correlation structure among sensors are given, we
know from 3.1 that f(X|Z) can be perfectly specified. Therefore, at least conceptually, it is

feasible to extend the results to cases involving correlated observations.

e In particular, the approach can be easily adapted to situations where likelihood based fusion
does not apply. For example, it is straightforward to deal with distributed detection with

unknown signal/noise statistics.

Notice that the situation involving unknown signal/noise statistics can also be dealt with within
the classical likelihood based inference framework. For example, generalized likelihood ratio test
estimates directly the unknown nuisance parameters while invariance principles circumvent the
estimation of those parameters by restricting the test to a class of tests. The applicability of
these approaches depends on the particular inference problem at hand. In the example given, the
GLRT approach is not applicable as there does not appear to be any reasonable way to estimate
the unknown noise variance given only quantized output from a limited number of sensors. On the
other hand, the invariance approach depends on the ability to obtain a maximum invariant statistic
which in many cases may not be possible due to the lack of symmetry of the inference problem. We
should also mention that we do not consider Neyman-Pearson criterion in this paper. Indeed, the
problem of distributed detection using Neyman-Pearson criterion gets quite complicated expecially
when dependent observations are involved [18].

An obvious disadvantage of the proposed method, compared with previous approaches is its
high computational complexity. While the implementation of the Gibbs sampler is conceptually
straightforward once the model is well understood, the inference procedure does require significantly
more computations than, for example, the classical likelihood based fusion rule. For example,
most of the numerical examples (with 50,000 Monte Carlo runs) in Section 3.3 require 2 — 5 hours
simulation for the Bayesian sampling approach in a stand alone Pentium PC, while for the likelihood
based fusion they usually take a few minutes. However, we should mention that MCMC is itself
a major breakthrough in statistics that has significantly lowered the computational complexity
as compared with the direct sampling method. For inference problems that can be described
using hierarchical models, such as the problem we are dealing with here, computational complexity
is usually manageable. In fact, most computations are devoted to the ‘sampling’ process, i.e.,
generating random samples that follow some specified distribution. Because of the nice property
of hierarchical modes, the sampling distributions can often be reduced to the standard known
distribution forms of lower dimensionality. For those distribution, efficient sampling techniques have
been well developed and documented in, among others, [19,20]. Issues regarding the computational
efficiency and the convergence of the Gibbs sampler for the proposed algorithm are currently under

investigation.
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Chapter 4

Adaptive CFAR Detection For
Clutter-edge Heterogeneity Using

Bayesian Inference

Radar CFAR detection is addressed in this chapter. Motivated by the frequently encountered
problem of clutter-edge heterogeneity, we model the secondary data as a probability mixture and
impose a hierarchical model for the inference problem. A two-stage CFAR detector stucture is
proposed. Empirical Bayesian inference is adopted in the first stage for training data selection
followed by a CFAR processor using the identified homogeneous training set for target detection.
One of the advantages of the proposed algorithm is its inherent adaptivity; i.e., the threshold
setting is much less sensitive to the nonstationary environment compared with other standard
CFAR procedures.

4.1 Introduction

Reliable radar CFAR detection is critical in dynamic clutter and jamming scenarios [21]. The
existence of heterogeneities in practical operational environments renders the conventional cell av-
eraging CFAR (CA-CFAR) ineffective. Heterogeneities arise due to the presence of multiple targets
and clutter edges [22]. Alternative schemes have been developed to address this issue, including
order statistic CFAR (OS-CFAR) and its variations [23-25] as well as various windowing techniques
aimed to exclude heterogeneous regions. Nonetheless, each scheme is targeted toward a particular
clutter/interfering target scenario. For example, a variation of CA-CFAR, called the greatest of
CFAR (GO-CFAR), calculates the average of the leading and lagging windows, respectively, and
selects the greater of the two as an estimate of the clutter strength. Clearly the underlying as-
sumption is that the non-homogeneity (e.g., clutter edge) appears in either the leading or lagging
window, but not both. Systematic analysis of various CFAR detectors in non-homogeneous back-
ground is given in [26]. Attempts have also been made to intelligently select a CFAR scheme based

on some homogeneity test statistics [27].
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Figure 4.1: Illustration of a CFAR detection problem. R; and Ry are leading and

lagging window reference cells and 71" is the test cell.

Fig. 4.1 is a simple illustration of the CFAR problem under consideration. Our task is to
decide if there is a target present in the test cell. For convenience, we assume that the reference
cells (also called secondary data) are equally split on either side of the test cell. Here X,’s and
Y are the outputs of square law devices that process the in-phase (I) and quadrature (Q) data
of the secondary and test cells, respectively. If the background is indeed homogeneous, a GLRT
receiver exists where the noise strength is calculated by simply averaging over all reference cells
and a threshold for Y can be set that satisfies a certain false alarm constraint. In the presence
of a heterogeneity, most CFAR schemes circumvent the direct estimation of the noise statistics.
Instead, various non-parametric schemes are adopted for robust detection performance [21].

In this chapter, we propose a probabilistic mixture model to account for the nonhomogeneity
of the secondary data in conjunction with Bayesian inference for parameter estimation [28]. We
adopt a parametric approach in dealing with possible heterogeneities. A distinction between the
proposed algorithm and several existing CFAR approaches is that the former is implemented in two
stages. The first stage is a homogeneous region identification procedure, which is then followed by
a standard CFAR method such as CA-CFAR applied to the selected homogeneous regions. Notice
that reference [27] also adopts a similar approach, though substantial differences exist. In [27], a
homogeneity test statistic was applied to predetermined data windows (namely, leading, lagging,
and the full window). The data window that appears to be the most homogeneous is selected for
clutter statistic estimation. In this chapter, homogeneous regions are identified adaptively and are
not limited to any predetermined data window scenarios as in [27].

The proposed approach is particularly suitable for the case of heterogeneities due to the pres-
ence of clutter edges. To illustrate the idea, consider the following simple case. Our reference cells
consist of two groups corresponding to two different regions with clutter powers pg and p;, where
o < p1, and which are otherwise homogeneous within their occupied region. Thus, we have a clut-
ter edge within the reference cells (see Fig. 4.2 for examples). The distribution properties derived
from the square law processing of two independent Gaussian processes (in-phase and quadrature
components) result in a Rayleigh envelope. For Rayleigh background, we have the following sce-
nario: Those cells associated with the lower level clutter region have observations that follow an
exponential distribution with parameter pg, while the others follow an exponential distribution

with parameter pu;. Notice that the test cell may belong to either one of the two regions. This
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mixture model is deterministic in the sense that every reference cell belongs to one of the two
classes. To take advantage of many existing inference tools, we can convert this to a probabilistic
mixture model where each cell is associated with one of the two families with a certain proba-
bility. Under this framework various inference tools can be used to estimate the mixture model
parameters. Candidates include the expectation-maximization (EM) algorithm [29,30] and various
Bayesian inference approaches [13].

In this work, we explore the application of empirical Bayesian inference for parameter estima-
tion. Specifically, a hierarchical model is proposed for the characterization of the non-homogeneous
reference cells and the associated priors are estimated using the data rather than chosen a priori.
A maximum likelihood (ML) estimation algorithm for the unknown parameters has been proposed
in [30] where an EM algorithm was developed to iteratively solve the ML estimation problem.
However, the inference goal here differs from that of [30]. In [30], the goal is to make a binary
decision on whether we have identically distributed exponential random variables, or a mixture of
two different exponential random variables. In the current CFAR problem, the objective is to iden-
tify the homogeneous clutter region, along with the estimates for the clutter statistics assuming an
exponential mixture model. Spatial continuity of each homogeneous clutter region in the presence
of a clutter edge will be used to assist the identification process. The estimated clutter statistics
will be used for the ensuing CFAR detection.

4.2 CFAR Detection Using Bayesian Inference

4.2.1 Hierarchical modeling of clutter edge heterogeneity

In reference to Fig. 4.1, our goal is to determine whether or not there is a target that dwells in the
test cell. Under the Rayleigh clutter assumption, it can be easily established that the likelihood

ratio test amounts to the simple thresholding of Y:

Y

VAR
\‘

where H is the target absent hypothesis and K is the target present hypothesis. The choice of
7 affects the false alarm level and for CFAR detection, it is desirable to choose 7 such that the
false alarm probability is maintained at a constant level. Assume that in the target absent case
the observation follows an exp(p) distribution, then a simple choice is to make 7 = ku where
k = —InPj, to achieve the desired false alarm probability value P,. In practice, however, u
is usually unknown and needs to be estimated, possibly from the observations in the reference
cells. For example, if we assume a homogeneous background, the observations in all reference
cells follow the same distribution exp(u), so that the CA-CFAR is clearly the optimal approach.
Estimating p is much more complicated in the presence of nonhomogeneity (e.g., a clutter edge) and
extensions based on some heuristics have been developed that aim to utilize those reference cells
that are considered homogeneous. These include greatest-of CFAR (GO-CFAR) and smallest-of
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CFAR (SO-CFAR) and censored cell average CFAR (CCA-CFAR) [31,32]. For example, in GO-
CFAR [33,34], the average power of leading (R;) and lagging (R2) windows are computed and the
larger one is used to estimate the clutter strength in the test cell. Another important CFAR scheme
is the order statistic based CFAR (OS-CFAR). Rather than averaging over (part of) the reference
window, a specific order statistic is chosen as an estimate of the background strength. The order
statistic is less sensitive to outliers and OS-CFAR tends to give more robust performance compared
with other CFAR detectors. However, OS-CFAR suffers large CFAR loss in terms of signal to
clutter power ratio if the background is indeed homogeneous.

In the presence of a clutter edge, the reference cells can be approximated as a mixture of two
groups: Those corresponding to either the lower or higher intensity clutter region. With Rayleigh
clutter, the two groups of clutter regions have power variation according to exponential distributions
such that

1 1
f(xn|Zn = Zn) = (1 - Zn)_eix"/ﬂo + Zn_eiwn/u1 (4'1)
Ho M1

where Z, = 0,1 indicates whether cell n belongs to the clutter region with mean value pg or
p1. The partitioning is deterministic; i.e., each cell belongs to either one of the two families.
This deterministic partitioning is not convenient for inference purposes. Therefore, we adopt a
probabilistic mixture model. Specifically, we assume that each Z, is a Bernoulli random variable
with success probability 6; i.e., P[Z, = 1] = 6 and P[Z, = 0] = 1 — 6. For example, if there
is only one clutter type present, ideally we should have all Z,, = 0, or equivalently, § = 0. The
prior probability 6 is usually unknown. Under the strict Bayesian inference framework, we need
to further assign a prior probability for 8. For example, we may assume that 6 is uniformly
distributed between 0 and 1, or adopt a more general prior in the form of a Beta distribution. In
this chapter, we use the empirical Bayesian inference procedure: The prior is estimated from the
observations. Empirical Bayesian inference provides a compromise between classical inference and
Bayesian inference. While the Bayesian inference tools can be utilized in the inference problem,
we avoid the choice of prior to prevent any bias introduced by the prior toward the inference goal.
Empirical Bayesian is more suitable to scenarios where the inference result is determined to a large
extent by the observations rather than the prior. Clearly, for the CFAR problem, when the number
of reference cells is moderate to large, empirical Bayesian appears to be a good choice.

The above model is summarized in Fig. 4.3. All observations, X,, n = 1,2,---, N, follow an
exponential mixture model as in (4.1). The Bernoulli variable Z,,’s have success probability 6 that
is common for Z,,. Our goal is to infer the noise/clutter statistics po and p1 as well as the posterior
probability that each cell belongs to one of the exponential distributions, i.e., W,, = P(Z, = 1|0, X).
Notice that 6 serves as a prior, yet it is to be estimated from the data. The estimate of W, is
necessary as it gives an indication as to which region the test cell belongs. Further, it can also be
used to improve the CFAR detection performance by utilizing the spatial continuity of different

clutter regions as we shall see later.
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4.2.2 Training Data Selection Using Bayesian Inference

Given the hierarchical model specification in the previous section, we now estimate the clutter
statistics po and p1, as well as 6, the prior probability of Z, being 1. The posterior probability
that Z, = 1, W,, as it turns out, can be derived directly from the EM algorithm.

The maximum likelihood estimation for ug, 1, and 6 aims to maximize

N

1 1
f WH1,0 X)= [ 1-6 —eiXi/“O + e_e*Xi/ul
Ho,H1 ( ) £[1 ( ),UO n

In [30], an expectation-maximization (EM) algorithm was developed for the maximum likelihood

estimation of the unknown parameters 6, puo, and py. Here, we briefly summarize the iterative

procedure.
1. E-step
gLe—Xi/Ml
A
wi(t) = Pz =10, X;) = - _
‘ Y ke Xi/m (1 - ) LeXi/mo
A (1 —6)-LeXi/no
w(i) = Pz =000,X;) = - T
eme z/,ul + (]_ — 9)%6 z/.UO
2. M-step
_ o 2iwo(9)X;
Ho = — N
2 wo(i)
p — ZiX;
> wi(7)
and
0= 1 iw (7)
N i=1 1

The EM algorithm involves iteration between the E and M steps until convergence occurs. The
estimation for the posterior probability W, is essentially the same as for w;(n). Hence, it can be
derived directly from the EM algorithm; i.e.,

gL e—Xi/m

Wy = 2
O-Le=Xi/m + (1-0)

1 o—Xi/mo
Moe

A simple simulation is conducted to determine the effectiveness of the EM algorithm in estimat-
ing the parameters. In this example, N is chosen to be 32 and we assume that the first 8 samples
correspond to clutter background with mean strength p; = 15 while the rest of the cells follow
an exponential distribution with puy = 1 (see Fig. 4.2(a) for an illustration). The EM algorithm
yields estimates for the mean values rip = 0.8886 and i; = 13.0787. Further, we plot the estimates
of the W), values versus the reference cell index n in Fig. 4.4. We note that they roughly reflect
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the separation of different clutter regions; i.e., W,’s with large values are mostly in the first 8
samples. However, it is also easy to see from the figure that due to the randomness of the data
within each region, there will be some cells whose estimated posterior probability W,, does not
truly reflect its association. This, however, can be somewhat alleviated by taking advantage of the

spatial continuity as presented in the next section.

4.2.3 Homogeneous Region Identification Using Spatial Continuity

An important by-product of the EM algorithm is the posterior probability W,, which indicates the
group to which each reference cell belongs. These estimates help determine the clutter region in
which the test cell dwells and is important in obtaining robust detection performance. For example,
if the test cell is in the region with higher clutter intensity (p1) but the threshold is determined
using po, we may experience excessive false alarms.

Clearly, once we identify the test cell clutter region location, the estimates of the clutter statis-
tics, po and py, that are obtained from the EM algorithm can be used directly in the CFAR
detector. An alternative approach is to re-estimate the clutter statistics by utilizing the output
parameters, Wy, n = 1,---, N. Notice that the W, values are the posterior probability estimates
that the nth test cell is associated with one of the two groups. Therefore, quantizing the W,, values
using threshold 0.5 has the desired property of having minimum error probability for the reference
classification. The clutter strengths py and p1 can be re-estimated using the simple averages of the
corresponding group of cells distinguished by thresholding the W,,’s. This amounts to converting
the probabilistic mixture back to the deterministic mixture that is more consistent with the ground
truth.

The above discussion also motivates further improvement by utilizing spatial continuity of the
clutter regions. In this chapter, a simple heuristic approach is adopted. The association of one
particular cell, namely the n** cell within the reference window, to either one of the two distributions

is determined not only by its posterior probability W,, but also by its neighbors; i.e.,
anns ) annerl: e 7Wn+ns

where 2ns+1 is the window size. A simple majority rule is implemented in this chapter to determine
the actual value for W,. If the majority of W;’s within the window (including W,,) belong to exp(u1)
(i.e., they have value greater than 0.5), then we claim cell n also belongs to exp(u1). Otherwise, it
is assumed to belong to exp(ug). Other heuristic rules, such as mean posterior probability within
the sliding window, can also be proposed. More sophisticated probabilistic models that capture
spatial continuity can also be developed. Examples include the spatial hidden Markov model.
The above idea is illustrated in Fig. 4.5. Fig. 4.5(a) is the result of direct quantization of Wy,
while Fig. 4.5(b) gives the result after post processing using spatial continuity where ng = 2; i.e.,
the window size for the majority rule is 5. Clearly, Fig. 4.5(b) gives a more accurate account of the
association of each cell. That is, it reflects more faithfully the ground truth where only the first 8

cells belong to the high intensity clutter region. Thus, estimation of the clutter statistics based on
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this approach tends to be more accurate. We note that while Fig. 4.5(b) matches precisely with
the ground truth, this may not always happen. However, the use of spatial continuity tends to

improve the overall clutter region identification performance.

4.2.4 CFAR Detection

The training data selection procedure described in the previous section yields a set of data that
are assumed to be homogeneous and are of the same clutter type as the test cell. We emphasize
again that profiling of the cells using W,,’s along with the spatial continuity property allows us to
determine the region in which the test cell lies. Based on this selected training data set, various
CFAR procedures can be implemented.

Presumably, if the data set is indeed homogeneous, CA-CFAR clearly is the obvious choice
due to its optimality for a homogeneous background. If, however, the training data set selected
in the first stage still lacks homogeneity (though it should always appear more homogeneous than
the original secondary data), more robust CFAR procedures can be implemented on the selected
training data set. The proposed CFAR detection procedure is summarized in Fig. 4.6, where the
first stage is to identify the homogeneous region using Bayesian inference, followed by standard
CFAR procedures applied only to the homogeneous region obtained from stage 1.

An important advantage of the proposed two stage CFAR processor is its inherent adaptivity,
hence enhanced robustness, with regard to the changing environment. This is especially true if
the mixture is a good approximation of the real scenario hence the first stage yields a relatively
homogeneous group of data. Its robustness results since the first stage training data selection can
adaptively determine the homogeneous clutter region. Thus the threshold setting is relatively simple
to determine — it amounts to the threshold setting for CA-CFAR under homogeneous background!
This, however, is not the case for other CFAR processes. For example, to achieve a desired false
alarm rate for OS-CFAR, the threshold is determined by a specific clutter edge scenario and may
vary drastically from one case to another. This will be addressed further in the next section using

some simulation results.

4.3 Numerical Examples

In this section, we present numerical examples to demonstrate the performance of various CFAR
detectors, including the EM-CFAR method proposed here. In particular, we consider algorithm per-
formance in various scenarios with the clutter edge location/duration as the parameters. Primary
consideration is given to the achievement of good detection performance with minimal variation in
threshold to achieve a specified false alarm level. Throughout the simulations, a non-fluctuating
target is used and the SNR is computed using the target power versus the average clutter power
of the test cell. Also, the sliding window size for spatial continuity is set at 5 for all cases. We
investigate a total of four different scenarios as illustrated in Fig. 4.2. Fig. 4.2(a) is an example

where there is a clutter edge in the leading window while Fig. 4.2(b) shows the case of a clutter edge
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in the lagging window. The difference between the two is that the cell under test dwells in different
clutter regions. Fig. 4.2(c) is an example where heterogeneity appears in the lagging window in
the form of a high intensity clutter region of finite length. The last example from Fig. 4.2(d) is
the case where the test cell dwells in a high power clutter region that sits in the middle of the
reference cells. Throughout the examples, a total of 32 reference cells are used (excluding the test
cell). The false alarm probability is fixed at 10~* and we use 106 Monte Carlo runs to determine
the detection probability for various signal-to-noise ratio (SNR) values. The powers for the two
different clutter regions are 1 and 15 respectively, resulting in a power difference of approximately
12dB. The SNR is calculated using the signal power over the power of the clutter region in which
the test cell dwells. In the implementation for OS-CFAR, we choose the 20" order statistic as an

estimate of the clutter power.

Detection assessment

e Example 1

In this example, the first 8 cells are assumed to belong to high power clutter and the test
cell belongs to the low power clutter region. The results of the probability of detection as a
function of SNR for various CFAR procedures are plotted in Fig. 4.7. Clearly the detection
probability of the EM based CFAR is among the leading methods in this case.

e Example 2

The second example differs from the first in that there is a clutter edge in the lagging window
and the test cell now resides in the high power clutter region. The results are obtained in
Fig. 4.8. Clearly, in this particular example, the detection probability of the EM based CFAR
is only slightly worse than the CA-CFAR while it is superior to all other CFAR schemes.

The slight advantage of CA-CFAR in this case can be explained as follows. Cell averaging is
sensitive to outliers in the sense that extremely large values (even if there are only a few of
them) may significantly change the mean value. This is why CA-CFAR suffers in detection
performance in Example 1 when the first 8 cells are considered outliers. However, in the
second scenario, where the target resides in the high level clutter region, the last 8 cells are
considered outliers. Yet, their values are lower bounded by zero and hence the performance
for CA-CFAR is fairly good in this case.

e Example 3

The third example is the presence of a high intensity clutter region in the lagging window as
illustrated in Fig. 4.2(c). In particular, cells 21 to 28 are assumed to belong to high power
clutter. The test cell now resides in the low power clutter region. The probability of detection
of the various CFAR schemes is obtained in Fig. 4.9. The detection probability of the EM
based CFAR is again the best among all CFAR schemes.

e Example 4
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In the last example, high intensity clutter appears in the middle of the secondary cells and
the test cell falls in the high power region. Notice here that nonhomogeneity appears in both
the leading and lagging windows as in Fig. 4.2(d). The detection performance for EM-CFAR

is again fairly robust in this case as shown in Fig. 4.10.

From the above examples, we observe that even though the EM-CFAR does not necessarily
yield the best detection performance for all clutter edge scenarios, it tends to compare favorably
to the specific CFAR scheme that performs best for each scenario. Thus, it is very robust to the

change of the clutter edge position/duration.

Threshold assessment

Perhaps the most noteworthy conclusion from the above results is the inherent adaptivity of
the EM-CFAR algorithm. We note that the background clutter not only lacks homogeneity, but is
also temporally dynamic. For CFAR schemes such as GO-CFAR, threshold changes are required
to maintain a constant false alarm probability. However, for EM-CFAR, the background statistics
are estimated using a parametric model that itself adapts inherently to each particular scenario.
This greatly alleviates the need for threshold adaptation.

To further understand this, we note that the test for various CFAR schemes, including the
EM-CFAR, can be summarized as

H
T=— S 7 (4.2)
K

where Y is the test cell observation and f is the estimated clutter power for the test cell, e.g., in
CA-CFAR, it is the average over secondary data. We observe in the simulations that the thresholds
required for the EM-CFAR to maintain the same false alarm probability have far lower standard
deviation than all the other schemes. Table 4.1 shows these results for the desired false alarm
probability at P, = 107*. The normalized standard deviation (o,/7 where 7 is the threshold) is
given in the last column. Clearly, the variation of the threshold for the EM based CFAR detector
is the smallest among all of them. Further, we note that for a false alarm probability at 1074, if
indeed the true clutter strength is known, then the desired threshold in (4.2) is n = — In Py, = 9.21.
Clearly, the thresholds for EM-CFAR in all cases are close to this nominal value. This facilitates the
choice of threshold for the CFAR property for a nonstationary environment. Notice, for example,
the CA-CFAR applied to the entire secondary data set requires thresholds that vary drastically to

maintain a constant false alarm rate for different heterogeneous scenarios.

4.4 Summary and Conclusions

Training data selection for radar CFAR detection in the presence of clutter edges is addressed in this
chapter. An adaptive CFAR detection approach is developed where the heterogeneous secondary
data are modeled as a mixture of two different distributions, each with different clutter strengths.

Parameter estimation for the clutter statistics is carried out using the empirical Bayesian inference
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Normalized
Example 1 | Example 2 | Example 3 | Example 4 Standard Deviation
EM-CFAR 12.2831 10.0528 15.6208 11.9686 0.1854
CA-CFAR 3.0254 13.2838 30.2273 2.8762 1.0421
GO-CFAR 1.9625 10.5917 26.7379 1.8334 1.1391
SO-CFAR 13.0278 24.9282 45.1486 11.8765 0.6503
OS-CFAR 2.8416 7.2997 21.4190 2.7450 1.0286

Table 4.1: The thresholds for all CFAR schemes to maintain false alarm probability at
10~*. While the thresholds for EM-CFAR does not vary from case to case,

all other schemes have dramatically different threshold for different examples.

procedure where the priors are estimated using the observations. Spatial continuity of the clutter
regions is utilized to improve the training data selection. The homogeneous region where the test
cell dwells is determined and used for CFAR detection where various standard CFAR procedures
can be subsequently applied. Numerical results show that the proposed method compares favorably
to competing CFAR detectors. The proposed CFAR procedure is inherently adaptive and therefore
suitable for nonstationary environments. Finally and perhaps most significantly, the threshold
setting to maintain a certain false alarm rate is fairly insensitive to the nonstationary environment

due to the inherent adaptivity in adjusting to different clutter levels.

31



Clutter intensity

15

Reference cells

1

Clutter intensity
A

32

15

Reference cells

1

Clutter intensity

15

24 32

Reference cells

1

Clutter intensity

15

21 28 32

Reference cells

11

22 32
(d)

Figure 4.2: Four different clutter edge scenarios. The cell under test is indicated as a

circle in the plots.
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X, X, e Xn

Figure 4.3: Hierarchical modeling for the CFAR parameter estimation problem where
the observations are connected through upper layer parameters. Each
observation y,, is assumed to be a mixture of two exponential distributions
with mean values pp and pq. Our goal here is to estimate puy and p1,

respectively, as well as the posterior probability that each Z, equals 1, i.e.,
P(Z, =1|6,X).
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Figure 4.4: Plot of W,,’s for the Bernoulli variates in the data model. The ground truth
is that the first eight samples follow exzp(p1) while the rest of the secondary
data follow exzp(up). As expected, the first eight samples have relatively

large values as they correspond to the clutter background.
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Figure 4.5: Post processing of the posterior association probability W,,’s using the

ground truth as used in Fig. 4.4. Figure (a) is the result of direct
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Figure 4.6: Block diagram of the proposed two stage CFAR detector. The first stage

(corresponding to the first two blocks) involve homogeneous region

identification using Bayesian inference and spatial continuity of clutter

regions. The second stage applies standard CFAR procedures to the

homogeneous region identified through the estimation procedure.
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Figure 4.7: The probability of detection as a function of SNR for Example 1 (see
Fig. 4.2(a)): P, = 10, and 10° Monte Carlo runs.
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Figure 4.8: The probability of detection as a function of SNR for Example 2 (see
Fig. 4.2(b)): Py, =107, and 10° Monte Carlo runs.
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Figure 4.9: The probability of detection as a function of SNR for Example 3 (see
Fig. 4.2(c)): Py, =107%, and 105 Monte Carlo runs.
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Figure 4.10: The probability of detection as a function of SNR for Example 4 (see
Fig. 4.2(d)): Ps, = 107, and 10° Monte Carlo runs.
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Chapter 5

Clutter Patch Characterization and

Identication Using Markov Random
Field Models

In this chapter, we address the problem of clutter patch identification based on Markov random
field (MRF) models. MRF has long been recognized by the image processing community to be
an accurate model to describe a variety of image characteristics such as texture. Here, we use
the MRF to model clutter patch characteristics, captured by a radar receiver or radar imagery
equipment, due to the fact that clutter patches usually occur in connected regions. Furthermore,
we assume that observations inside each clutter patch are homogenous, i.e., observations follow a
single probability distribution. We use the Metropolis-Hasting algorithm and the reversible jump
Markov chain algorithm to search for solutions based on the Maximum a Posteriori (M AP) criterion.

Several examples are provided to illustrate the performance of our algorithm.

5.1 Introduction

Accurate statistical characterization of clutter background is critical to the design of efficient target
detection and identification algorithms for radar systems. The conventional model assumes that
the return signal consists of a known signal in Gaussian noise. The performance of a radar signal
detector based on this conventional model degrades significantly in the presence of a complex clutter
background. To improve performance, it is imperative that the clutter background be modeled
accurately. One needs to determine the homogenous patches of clutter that occur due to reflections
from heterogeneous background. In addition, the underlying probability density functions (PDF)
in each clutter patch needs to be identified. Using this information, intelligent detection schemes
can be designed that are expected to perform better.

The goal of this paper is to address this important problem and develop an algorithm for clutter
patch identification.

Slamani [35] initiated the investigation of the clutter patch identification problem in which the
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surveillance volume is divided into homogenous regions based on PDF's of clutter. His methodology
is composed of two steps. In the first step, a surveillance volume is separated into clutter patches
and background noise regions using an appropriate threshold because noise power in background
noise regions is lower than those in clutter patches. An appropriate technique for determining this
threshold was also presented. Since clutter patches cannot occur at isolated points, some misclas-
sifications can be removed through a windowing method where the similarity among neighboring
pixels is measured and compared. A change to the class at the pixel of interest is made if the num-
ber of neighboring pixels conflicting with the pixel of interest exceeds a certain threshold. Clutter
patches are divided using the above procedure according to their power levels until they cannot be
divided any further. In the second step, each clutter patch is separated into more regions according
to their underlying noise distributions. Here, the Ozturk algorithm [36] is used to approximate
noise distributions by generating a coordinate from an order statistics of the samples. Then, for a
given neighborhood, the coordinate is plotted and distances to the list of possible noise distribu-
tions are measured. By using these distances, the border pixels between two adjacent homogenous
regions can be determined. Some promising results have been presented in [35]. However, this
methodology is intuitive and lacks theoretical justification. Here, we extend the work presented
in [35] and develop an algorithm under a statistical framework to automatically identify clutter
patches and estimate the underlying noise distributions.

Image segmentation techniques seem to be good candidates for this problem due to similari-
ties between segmentation and clutter patch identification problems. The main objective of both
problems is to separate an inhomogeneous region into several homogenous regions according to
some features. For image segmentation, these features may be textures or gray levels, whereas,
for clutter patch identification, the PDFs are the main concern. In the past few decades, there
have been a number of image segmentation algorithms that have been developed for a variety of
problems. These fall into two general categories of statistical-based and deterministic algorithms.
Under the statistical framework, the Markov random field (MRF) model has received a great deal
of attention because a MRF model can characterize the information contained among neighboring

pixels quite accurately [37—41]. As a result, we will develop our algorithm based on a MRF model.

5.2 Problem Statement

Let S be a set of sites (pixels) s, and A = {0,1,---,L — 1} be the phase space (intensity level).
Furthermore, let X(S) € AS denote a clutter patch (configuration) vector or a clutter patch image
(CI). Note that L > 2 is the number of clutter patches in the scene in which the exact value of L is
unknown. Here, we model L as a random variable characterized by the probability mass function
Pr(l) . We assume that X(S) satisfies MRF properties with a Gibbs potential V¢ (x) [37-40].
Hence, we can write the marginal PDF of X(S§) [40] as

(5.1)

Tx (%) = Z—lxew [— > Vo(xi)

ccs
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where Zx = >, cas €xp [~ Y s Vo(x)] is the normalizing constant. Note that X(S) is a realiza-
tion of a clutter scene and ) s Vc(x) is called the Gibbs energy function. These terms will be
used extensively in our discussion. Let Y (S) € RS be the associated clutter or noise vector whose

observations in pixels s; and s; are statistically independent given the CI, i.e.,

P (y(si),y(s5)|1X(S)) = p (y(s:)|X(S)) p (y(s5)| X(5)) (5.2)

where p is the probability density function of clutter or noise. Furthermore, the probability density
function (PDF) of clutter or noise at a site depends only on the type of clutter patch and observation
at that site, i.e.,

p(y(s:)|X(85)) = [ (y(si), w(s:)) (5.3)
where f(a,b) denotes a PDF.

In radar and sonar systems, we usually assume that the clutter can be modeled as one of several
known distribution types. For example, Slamani [35] assumed that noise can be Rayleigh, Weibull,
lognormal or K distributions. Here, we also assume that f(a,b) can only come from a known family
of distributions that is

£ (y(s2),2(55)) € {m(¥(50), Om) bneirory (5.4)
where M indicates the size of the family of PDFs, and 6,, is the parameter vector corresponding to
the underlying PDF.

We formulate the clutter patch identification problem as an M-ary hypothesis testing problem
where each hypothesis corresponds to a different CI. For a given CI (hypothesis), the observation
volume is divided into several homogenous regions of clutters. We note again that the term ”ho-
mogenous” implies that the PDFs of observations at every pixel inside a clutter patch are identical
and independent. Furthermore, since we formulate our problem as M-ary hypothesis testing prob-
lem, techniques developed to solve signal detection problems can be employed and we provide our

methodology in the next section.

5.3 Optimum Clutter Patch Identification Algorithm

The maximum a posteriori (MAP) criterion [2,42] is used for identifying clutter patches in our

work. This criterion is expressed as
X, = arg {max[ (XY = y)]} (5.5)
]
From Bayes’ rule, (5.5) can be rewritten as

P(Y ZY)IX]')P(X]')]}
PY =y)

(5.6)

} (5.7)

X, —
& arg{n)l(ax[

i
Since P(Y =y) is independent of Xy, the above equation reduces to

(HP (s)]@;(s) )P(X]’)

seS

Xy =arg {n}(ax [P(Y = y)|Xj)P(Xj)]} =arg {max

J
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Distribution H PDF

1. T-2 Gumbel vy~ " texp(—y~7) 0<y<oo
2. Gamma, ﬁexp(—y)y“’fl 0<y<oo

3. Pareto y;’ﬁ y>1

4. Weibull vy  Hlexp(—y7) y>0

5. Lognormal \1/_ (log(%)/7)2 y>0
6. K-distribution (2) ()" Ky,a(y)  y>0

7. Beta eay Tl-y)’t 0<y<1

Table 5.1: Conventional forms of the PDFs

Substituting (5.1)-(5.3) into (5.7) and recognizing that the number of clutter patches is random,

} (5.8)

where /; is the number of clutter patches in a CI x;. We note again that Pr(-) is a probability

} (5.9)
where m(z;(s)) denotes the mth type of PDF.

In practice, the direct minimization of equation (5.9) is not feasible due to the enormous number

we have

Xk:arg{max[<HP (s)]z;(s) )) —ewp( > Vel x]) (1)

sES ccs

mass function associated with L. Using (5.4), the above equation can be written as

X =arg {max [(H fm (= (s m(w](s)))) - €exp ( Z Vo ( X] ) (1 )

sES ccs

of possible CIs. Moreover, parameter vectors associated with each clutter patch are generally
unknown. Therefore, there is a need for a more efficient way to obtain the solution of (5.9) and
estimate the unknown parameters. Here, we will employ the Metropolis-Hasting algorithm and the
reversible jump Markov chain algorithm [43] together with ML estimation to search for the solution

of (5.9) and estimate unknown parameters simultaneously.

5.4 Numerical Results

Here, we choose T-2 Gumbel, Gamma, Pareto, Weibull, Lognormal, K-distribution, and Beta dis-
tributions to form the allowed set of PDFs. These PDFs are given in Table 5.1. In this example,
the accuracy of our algorithm is illustrated by using the simulated CI displayed in Figure 5.1 whose
intensity levels are black, gray and white, respectively. Here, white indicates background noise
whereas black and gray indicate clutter patches with different distributions. As mentioned in [35],
the background noise region usually has Rayleigh distribution which is equivalent to Weibull distri-
bution with shape parameter 2. For this distribution, we choose the location and scale parameters
to be 0.88 and 0.46, respectively.
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Figure 5.1: The clutter patch image.

For two clutter patches, we choose a Weibull distribution with location, scale and shape param-
eters 4.5, 3.0, and 1.5, respectively for the first patch, and a Lognormal distribution with location,
scale and shape parameters, 3.6, 4.0 and 0.89, respectively for the other. The resulting observed
image is shown in Figure 5.2. Moreover, we assume that the number of clutter patches is a number
between two and five each occurring with equal probability. Hence, the maximum number of clutter
patches is five.

Next, the observed image is submitted to our proposed algorithm, and the resulting Cls after
0, 50, 100, 200, 300 and 500 iterations are displayed in Figure 5.3 (a)-(f), respectively. Initially,
the clutter patches and background noise region have misclassifications in the boundary regions.
As the number of iterations increases, the resulting CI approaches the true model in Figure 5.1.
After 500 iterations, they are almost identical except for some isolated misclassified pixels. The
corresponding results on parameter estimation and distribution approximation are excellent, and

they will be provided in the full paper.
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Figure 5.2: An observed image.
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(a) (b)
w W
(c) (d)
. ‘ '
() (f)

Figure 5.3: : The resulting CI after (a) 0; (b) 50; (c) 100; (d) 200; (e) 300; (f) 500

iterations.
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Chapter 6

A GLRT for Multichannel Radar
Detection in the Presence of both

SIRP Clutter and Additive White

Gaussian Noise

Motivated by multi-channel radar detection applications in the presence of both Gaussian and
non-Gaussian disturbance, we develop maximum likelihood parameter estimates for spherically
invariant random processes (SIRP) in the presence of white Gaussian noise. Both cases with
known and unknown white noise variance are treated. As the estimators do not admit closed-form
solutions, numerical iterative procedures are developed that are guaranteed to at least converge to
the local maximum. The developed estimate allows us to construct a generalized likelihood ratio
test (GLRT) for the detection of a signal with constant but unknown amplitude embedded in both
Gaussian noise and SIRP disturbances. This new GLRT compares favorably to existing detection

schemes that neglect the existence of white Gaussian noise.

6.1 Introduction

Multichannel radar detection considers the detection of the possible presence of a target at a
given steering direction in the presence of clutter/noise disturbance. For air-borne high resolution
radars operating at low gazing angles, spherically invariant random process (SIRP) has emerged
as a viable model to describe the backscattering process. For this clutter model, the clutter vector
c is expressed as ¢ = sg where g is complex Gaussian with covariance matrix 3 and s is a non-
negative scalar, unknown random clutter component (also called texture component) statistically
independent of g. The power variation of ground clutter among range cells is captured by the

variation of s while the Gaussianity is dictated by the central limit theorem applied locally to each
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range cell. Thus the multichannel radar detection in the presence of SIRP clutter and additive
white Gaussian noise (AWGN) can be formulated as the following hypothesis testing problem
Hy x=sg+n (6.1)
H, x=av+sg+n
where the complex observation data vector x € CV where N is the vector size*; v is the steering
vector, a is the unknown signal amplitude, and n is the AWGN vector. Examples for SIRP clutter
[44-46] include the K distribution and Weibull distribution for specific shape parameter values. It
is worth mentioning that SIRP belongs to a widely referenced class of random processes, the so-
called compound-Gaussian process when the texture component remains stationary for one coherent
processing interval.

While much effort has been undertaken in finding a good detector for signals embedded in
SIRP clutter, most existing work assumes a clutter-only model; i.e., the presence of additive white
Gaussian noise at the receiver is largely ignored. Consider the clairvoyant case of known X, i.e.,
the covariance structure of g is known. In the absence of white Gaussian noise n, the maximum
likelihood (ML) estimate of the unknown parameters, namely the signal amplitude a and the scalar
power term for the SIRP component s, can be derived straightforwardly. Substituting the ML
estimate under the two hypotheses into the likelihood ratio for the hypothesis testing problem [47],
one arrives at the well-known test statistic in the form of
xIx1v|?

I = (XHZ_lx) (VHE_lv)

(6.2)

We remark here that this test statistic has been independently developed in [48] as an asymptotically
optimum test for radar detection in SIRP clutter using the representation theorem for SIRP derived
in [46]. Since this test statistic added to the matched filter detector a normalizing constant x7 2~ !x,
we will term it the Normalized Matched Filter (NMF). We note that the test statistic bears the same
form as the ACE (adaptive coherence/cosine estimator) test developed for a Gaussian disturbance
model with a scale change between test and training data [49].

Disregarding the presence of the AWGN in the detection problem was largely based on the
premise that clutter power is usually several magnitudes higher than that of the AWGN, thus
making the presence of AWGN seemingly irrelevant. It was pointed out, however, that the presence
of AWGN causes the NMF statistic to lose the desired CFAR property (see, e.g., [50]). Here
we further demonstrate that, even under extreme power disparity between clutter and noise, a
carefully constructed detection statistic can significantly outperform that of (6.2) which neglects
the presence of AWGN. To do so, we develop in this chapter a maximum likelihood parameter
estimation procedure for SIRP model in the presence of AWGN. Notice that for SIRP, one can
develope a Bayesian estimator by utilizing the parametric model imposed on the texture component

s. We adopt, however, the ML approach thus treating s in each range cell as an unknown constant,

*In the context of space time processing, N = JL where J is the number of antenna elements and L is the number

of pulses within one coherent processing interval.
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much in the same way as that of [47]. The estimators can be applied to any SIRP clutter model
regardless of the different prior on s. The developed estimates are used to construct a new GLRT
that takes into account both SIRP and the white Gaussian disturbances. Throughout this work,

we assume that the covariance matrix ¥ is known as in [47].

6.2 ML Estimate of Compound-Gaussian Parameters

For airborne radar applications with non-Gaussian clutter, while the clutter texture power (the
s parameter) at the test cell is usually unknown, knowledge of the additive white Gaussian noise
power, 02, may be available from the operational system. We therefore distinguish the following

two cases: (1) 02 known and (2) ¢ unknown.

6.2.1 Known o2

For the known noise power case, we assume, without loss of generality, that 02> = 1 as the
observations can be properly normalized. We need, therefore, to solve the ML equations for 1) s

under the Hy hypothesis; and 2) s and a under the H; hypothesis.

ML estimate of s under Hy

Under Hy, the only unknown parameter involved is s and we have the likelihood function:

1
X
IV

L(s;x)

exp (—xHMflx)

Since ¥ is assumed to be positive definite and Hermitian, ¥ can be diagonalized by a unitary

transformation (a.k.a., eigen decomposition)
> = UAU#

where U is a unitary matrix and A is a diagonal matrix whose diagonal elements, say, A; for

t=1,---,N, are real positive. Then
M = sX +I=U(sA +1)UA

From this, we get
N

M| = J]Gsxi+1)

=1

1 1
M! = Uldi UH
( Lag (3A1+1’ ’SAN+1>>

Therefore
N
0||M -
’al—s L ST+ 1) = 7™ Y v (6:3)
=1 i
oM -1 ) -\ —AN H —2
_ - = _3YM 4
s U(dzag((s)\l_'_l)y ’(s)\N—|—1)2>>U (6.4)

46



where T'r(A) is the trace of matrix A. The last equality follows from the unitary property of U.
By taking the derivative of L(s;x) with respect to s and setting it to 0, we get

OL(s;x) 1 oMt Ha el 1 Hen 1\ pgoOM™!
it ke’ A bt —xIM - —xIM =0
s “ “2 s exp ( X x) || || exp ( X x) X s X
From (6.3) and (6.4), we have
Tr(ZM 1) = xxM 2x (6.5)

ML estimates of a and s under Hy

Under Hy, both a and s are unknown and the likelihood function is

1
L(a, s;x) ™I exp (—(x — av)fM*(x — av))
Taking the derivative with respect to a and setting it equal to zero, we have
_ vEM - 1x (6.6)
T VEM-1y ’

The ML equation regarding s can be derived in a very similar fashion as that under Hg hypothesis
and we get
Tr(EM 1) = (x — av)TEZM %(x — av) (6.7)

Thus the ML estimates for a and s are the solutions to the two nonlinear equations (6.6) and (6.7).

6.2.2 TUnknown o2

If 02 is unknown, we also need to find its ML estimate under Hy and H;. Define the covariance
matrix M = sX + oI, the new estimates are developed below.
ML estimates of s and 0% under Hy
Under Hy, we have the likelihood function:

1
L(s,0%;x) o exp (—xH¥M~!x
R )
Since
M = 52 + 0?1 = U(diag(s\; + o2, ,sA\y + 0°))UH
We get
N
M| = J](sxi+0?
i=1
1 1
M = U(d U
< 19 <s)\1+02’ ’s)\N-l—Uz))
Therefore
N
oM M| -1
= =Tr(M™ )M
d7 = Ly g = TTMTIMI

oM~ 1 1
— di - U =M—?
902 U ( Lag ((3A1 Y022 (say + 02)2>>



Taking the derivative of L(s,0?;x) with respect to s and o2 and setting them to zero, we obstain

Tr(EM-!) = tzm—2x} 65)

Tr(M1) = xHFM~2x

ML estimates of a, s and o2 under H;

The likelihood function becomes

1
X
M

L(a, s, 0% x) exp (—(x — av) M~ (x — av))

and by taking the derivative of L(a,s,o?;x) with respect to s, 0? and a and setting them to zero,

we get
@ = miT
Tr(EM 1Y) = (x—av)IEM2(x —av) (6.9)
Tr(M™Y) = (x—av)fM2(x —av)

6.3 Numerical procedure for solving the ML equations

The set of nonlinear equations developed in Section 6.2 for solving the maximum likelihood estimates
do not admit closed-form solutions even for the simplest possible case, namely the estimate of s
under Hy with 0% known (equation (6.5)). Numerical procedures are now considered to solve
these set of equations. While many standard numerical methods such as the Newton method [51]
can be applied to solve these equations, we found that a simple bisection algorithm works well in
obtaining reasonably good results fairly efficiently, especially when the clutter to noise power ratio
(CNR) is large. Indeed, for large CNR, the solutions to the nonlinear equations are almost always
unique, which makes the bisection algorithm an appealing candidate due to its simplicity in terms
of implementation.
We use the simple example of (6.5) to illustrate the implementation of the bisection algorithm.
Rewrite (6.5) as
f(s) ETr(EM™) - x#EM2x = 0 (6.10)

where under Hy, x ~ CN(0,M). We use the following bisection method to obtain the solution of
f(s) = 0.

1. Find s, < sy such that f(s;) <0 < f(sg). Set k =0.
2. If |s{ — s, | < e for a given tolerance €, then sfina = 3(s5 + 55, );
3. Else, sg+1 = 1(sf +s;); and

o If f(sg4+1) =0, then spine = Sg11;
e Else If f(s41) <0, then s; | = sg11 and 32—+1 = s:;

e Else If f(sg+1) > 0, then s,jﬂ = Sk+1 and s, = 5.
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4. k=k+1. Go to 2.

The bisection algorithms for other sets of nonlinear equations are slightly more complicated.
For example, with known o2 and under H;, we need also estimate a in addition to s. However,
since a has a closed-form solution given s, one only needs to insert a step at each iteration for a.

Next, we discuss the existence and uniqueness of the solutions to the nonlinear equations. We
show that under the large CNR, there always exist solutions to the set of nonlinear equations.
Consider the case for hypothesis Hy with known noise variance, therefore we only have a single
variable to deal with.

For f(s) as in equation (6.10), we know that ¥ can be diagonalized by a unitary matrix U, i.e.,
¥ = UAUY
where A = diag(\i, A2, -+, An). Define y = Ufx, so that

f(s) = Tr(EM™) - x"SM2x
= 77 (UAUT (UAU +6%1) ') - 7r (xTUAUT (UAUT + 0T) *x)

N N

_ Z Ai Z Ry
L g\ +02 s\ +o02
=1 i=1
N
Ai lyil?
= _ |1 - — 6.11
;s)\i+a2 ( sAi + o2 (6.11)

where we define y = U#Hx hence the covariance matrix for y is sopA + oI and s is assumed to be

the true underlying scale parameter.

Define
9(s) = T )\|iy:|_202
) = sals)
Then g;(s) is monotonically increasing in s with
lim gi(s) = 1
limgi(s) = 1- "‘;"2'2

Define Py as the probability that the limit at zero for g;(s) is less than zero, i.e.,

12
Py = P<1—|y2| <0>

o2
= P(lyil> > o?)

Since y; ~ CN(0,soA; + 0?) and for large CNR (i.e., soA > 0?), Py ~ 1. Therefore as s — 0,
9i(s) < 0 with probability close to one. Consequently, f;(s) is negative for small s but approaches

49



zero from the positive when s — oco. From equation (6.11), it is easy to see that there exists at
least one solution for f(s) = 0.

In fact, a close inspection of (6.11) reveals that if the CNR is large for those dominant com-
ponents (large A;’s), existence of solutions is guaranteed with probability close to 1. To see this,
notice that those terms in (6.11) with large \; dominate when s — 0.

As to the uniqueness, while analytic proof has not been obtained, it is found through thorough
numerical simulation that for large CNR, a unique solution is always determined. Fig. 6.1 is a

typical example for f(s) as a function of s.

20

—100

-120

-140

Figure 6.1: f(s) as a function of s.

6.4 Performance evaluation

6.4.1 Performance comparison with NMF

The ML estimates developed in the previous sections can be used to construct a GLRT for the

detection problem specified in (6.1):

maxg s o2 f(x|a, 8, 02; Hl)

'y =
maXg ;2 f(X’S, 02; HO)

1 -~
_ Max s 52 T €XP (—(x—av)IM (x — av)) (6.12)
max, ,2 le exp (—xHEM1x)

In this section, we use numerical examples to compare the proposed GLRT with the NMF developed
in [47,48], which itself is a GLRT assuming clutter-only disturbance. In the first example, we use
two channels, four pulses, hence N = 8, and the average CNR = 40dB. The output signal to

interference and noise power ratio (SINR), defined as

SINR = 10logyq |a|*vIM v,
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is fixed at 6dB. The clutter assumes a K distribution with a shape parameter o = 0.1. The clutter
ridge lies along the diagonal in the normalized Doppler-spatial frequency domain. The target signal
is located at 0° azimuth and 0.15 normalized Doppler frequency in the spatial-temporal (Doppler)
domain and the clutter has one lag temporal correlation u; = 0.999 which helps determine the
covariance matrix structure.

10°

— Il
— — T2 with o known
—- T2 with 6 unknown
J=2
N=4
CNR=40dB
u‘:0.999

Probability of Detection

107t - \7 \72 \7
10 10 10 10
Probability of False Alarm

1 10°

Figure 6.2: Performance comparison between the two GLRT (I'; and I's) in the

presence of K distributed clutter and additive white Gaussian noise.

Fig. 6.2 gives the receiver operating characteristics (ROC) curves of the two statistics, namely
the NMF and the proposed GLRT statistic. For the cases of both known o2 and unknown o2, the
proposed GLRT of (6.12) outperforms the NMF of (6.2) by a significant margin. In the second
example (shown in Fig. 6.3), we use a two channel thirty-two pulse example (hence N = 64) which
is otherwise identical to the previous case. The same conclusion holds for this higher dimensioned
case. The only difference is the curves for GLRT in the cases of known ¢? and unknown o2 are
almost identical. This is because of the improved estimation performance for 02 (and hence s as
the nonlinear equations are coupled) in the higher dimension case due to the increased data size
for each test cell.

Fig. 6.4 gives the probability of detection against the SINR for a fixed false alarm at 1073
with N = 8 and 02 unknown. It can be easily seen that the proposed GLRT outperforms NMF,

especially in the low SINR region.

6.4.2 Discussion of the CFAR property

In the absence of white Gaussian noise, the NMF of (6.2) has the desired CFAR property, i.e.,
the false alarm rate is independent of the clutter power term s. In the context of K distributed
clutter, the CFAR with respect to power variation implies that it is CFAR with respect to the
shape parameter.

In Fig. 6.5, the probability of false alarm as a function of the shape parameter is obtained via

simulation for a threshold chosen such that the nominal false alarm rate is 10~3 in the clutter-only
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Figure 6.3: Same as in Fig. 6.2 except that N = 64 instead of 8.
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Figure 6.4: Probability of Detection as a function of SINR. N = 8 and ¢? is unknown
for I's.

case. The average CNR is again fixed at 40dB. Clearly, the false alarm rate changes significantly
as a function of the shape parameter in the presence of additive noise, indicating the loss of CFAR
for the NMF.

In Fig. 6.6, using the same setting as in the first example, the probability of false alarm of the
proposed GLRT is given for a fixed threshold for the known o2 case. Notice that if the clutter
texture term s is known perfectly, then the problem specified in (6.1) is a simple Gaussian noise
problem with known covariance matrix M and the detection statistic in (6.12) reduces to the
matched filter for Gaussian disturbance. Hence it is clearly CFAR with respect to s. The fact that
we have to estimate s changes the CFAR property as shown in Fig. 6.6, most noticeably in the
region with very small shape parameter. In this particular example, we notice that the proposed
GLRT is still CFAR with respect to the shape parameter when it is greater than 0.1. The reason can
be explained as follows. The ML estimate of s is likely to be very accurate for large CNR. At very
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Figure 6.5: Flase alarm rate of the NMF statistic (I'1) as a function of the shape
parameter of the K clutter. The nominal Py = 0.001.
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Figure 6.6: Flase alarm rate of the new GLRT (I'3) as a function of the shape

parameter of the K clutter. The vector dimension N = 8.

low shape parameter values, the variance of the clutter texture term s becomes large. Therefore,
even if the average CNR is kept at 40dB, the likelihood of having smaller CNR increases. This
results in a larger error variance of the estimate for s which in turn affects the CFAR property of
the proposed statistic.

This CFAR performance will improve as the dimension N increases. Illustrated in Fig. 6.7
is a case for N = 64 that shows a better CFAR property than that of N = 8. This is due to
the improved estimation performance for s for large N, as mentioned before. Notice that for the
proposed GLRT, there is no nominal false alarm rate for a fixed threshold as the evaluation of false

alarm probability is generally intractable.
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Figure 6.7: Same as in Fig 6.6 except that N = 64.

6.5 Conclusions

In this chapter, we consider the detection problem for the case of unknown, constant signal am-
plitude in the presence of non-Gaussian clutter plus additive white noise. The ML estimates of
parameters associated with the detection problem, including both the clutter texture component
and the target amplitude are derived. A simple bisection algorithm is devised for solving the ML
equations. The developed estimates are then used to construct a GLRT test which can be shown
to outperform the NMF developed for the clutter-only case, although at the expense of increased
computational complexity. We also observe, through numerical examples, the NMF loses CFAR
due to the presence of additive white noise while the proposed GLRT retains the CFAR property

for a wide range of shape parameter values.
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Chapter 7

Maximum Likelihood Estimation of
Covariance Matrix for

compound-Gaussian Processes

Compound-Gaussian processes have found important applications in modeling clutter returns for
high-resolution radar. In this chapter we develop a maximum likelihood estimate for the covariance
structure of a compound Gaussian process. The performance of the covariance matrix estimator is
then evaluated in the context of adaptive radar detection. Through extensive numerical simulation
and by using a popular CFAR detector for coherent pulse train detection in non-Gaussian clutter,
we show that the proposed estimator provides better detection performance over existing covariance

matrix estimators®.

7.1 Introduction

Experimental studies using high-resolution airborne radar clutter returns strongly indicate that
the disturbance is no longer Gaussian. In particular, it was widely reported that the compound-
Gaussian processes provide a better description to the statistical behavior of the power variation
of clutter returns. In compound-Gaussian processes, the disturbance is modeled as a product of a
real and non-negative scalar, s, and a correlated zero mean Gaussian vector, c. Even though c is
modeled as stationary complex Gaussian process, the variation of s from range cell to range cell
renders the product process non-Gaussian. A particularly important compound-Gaussian process,
the so-called spherically invariant random processes (SIRP) imposes a parametric model on s and
therefore is amenable to analytical approaches [44-46]. Special cases of SIRP include the well
studied K distributed clutter and Weibull clutter.

The observation of non-Gaussian disturbance has spurred great interest in space-time adaptive

processing (STAP) for non-Gaussian clutter. A recently proposed statistic has been recognized as

*The materials presented in this chapter was never published in the open literature. Similar ML estimation

procedure was independently derived by Conte, et al, and reported in [52].
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a robust detection scheme for compound-Gaussian disturbance and exhibits a constant false alarm
rate (CFAR) property with regard to the clutter power variation [47,48]. Consider target detection
under compound-Gaussian clutter, i.e., we want to distinguish the following two hypotheses given

the test cell observation vector x:

H —
0 X SC (71)
H, x=av+sc

where ¢ is complex Gaussian with covariance matrix 3, a is the unknown signal amplitude, and v
is the steering vector. The test statistic, derived as a generalized likelihood ratio test by treating s

and a as unknown constant parameters [47], has the following form:

|xH 3ty |?

I'= (XHZ_lx) (vHZ_lv)

(7.2)

This proposed test statistic, herein termed as the normalized matched filter (NMF) due to the
fact that it adds a normalizing constant to the well known matched filter detector for Gaussian
disturbances, requires the knowledge of the covariance matrix structure of the compound-Gaussian
process. Adaptive schemes that build on various covariance matrix estimators using secondary
target-free data have since been proposed. While the sample covariance matrix (SCM) can be
used as a heuristic estimate for the true covariance matrix, a more elegant estimator that tried to
mitigate the effect due to the power variations was proposed [53-55]. Further, if the compound-
Gaussian process is indeed an SIRP and assuming that the probability density function on the
real and non-negative scalar component s is available, a maximum likelihood (ML) estimate of the
covariance matrix can be obtained using the expectation maximization algorithm [56,57].

In this chapter, we develop an ML estimator of the covariance matrix by assuming a general
compound-Gaussian process. That is, we do not make any assumption about (or utilize) the
statistics for the power term s. Instead, we treat the scalar variable s for the secondary data as
an unknown constant conditioned on each realization or coherent processing interval (CPI) of the
data. The developed algorithm therefore is not restricted to any particular SIRP processes. The
performance of the estimator is evaluated using the detection performance by plugging the estimate
in the NMF test statistic and compared with the SCM and the estimator proposed in [53,54]. We

show that it consistently provides the best detection performance among the three.

7.2 Maximum Likelihood Estimation of Covariance Matrix for
Compound-Gaussian Processes
Assume that we have K secondary data, each of them is a N x 1 vector with the k" vector expressed

as

Z = SECy (73)

where ¢, ~ CN(0,X) and s;’s are some unknown real and non-negative constants. Our goal

is to estimate X using the K training data z;’s. The log likelihood function can be written
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straightforwardly as

L(E,Sl,"',SK) = lng(Zl,"',ZK|2,31,"',SK)
= 1
= —NKlog(r) — Klog|%| - ) [N log(sy) + —zi X7z,
Sk
k=1
where |A| denotes the determinant of matrix A and (-)¥ denotes the conjugate transpose of a
matrix. We seek to maximize L(X,sq,---, 8k ) with respect to X as well as s; for k = 1,--- | K.

Taking the derivative with respect to ¥ and setting it equal to zero, we get

K T
> (Z gzkzkH> >

k=1

~K(xHT - =0 (7.4)

where (-)7 denotes the transpose of a matrix. In obtaining the above results, we have used the

following facts

Olog|X| _I\T
0z ¥ 14 _ \T
aT = (2 IZZHE 1)

These can be derived staightforwardly from the definition of derivatives with respect to matrices
[58,59]. From (7.4) it follows that:

11
_ 2 : H
= E 2 ngZk (75)
Taking the derivative of L(X, s1,- -, sx) with respect to s; and set it equal to zero, we get
1 2
= 3
kTN
Plug it back to (7.5), we have
Zka
Z z 3 (7.6)

The solution to (7.6) yields the ML estimate of 2. Notice the subtle difference between the ML

estimate and the estimate proposed in [53,54] which has the form

K H
5= 3 2k (7.7)

H
K 1k Zk

where the normalizing term is a simple inner product of the corresponding secondary data vector,
as opposed to the quadratic term in the ML estimate in (7.6). We call the estimator in (7.7) herein
as normalized sample covariance matrix (N-SCM) [55].

Notice that finding the ML estimate of ¥ from (7.6) requires an iterative algorithm which is
more complicated than either of SCM and N-SCM. However, the iteration is fairly straightforward
to implement — it is in the same form as (7.6) by updating the current estimate of ¥ from the
previous one. Further, we found through numerical simulation that the algorithm usually converges

after only a few (less than 8) iterations. To further expedite the convergence, initialization using
SCM or N-SCM can be employed.

57



7.3 Performance Comparison

In this section, we compare the performance of the three covariance matrix estimators, namely the
SCM, N-SCM, and ML estimators, in the context of the multichannel radar detection problem. We
assume that the disturbance follows a K distribution that has been widely used to model clutter
backscatter from airborne radars. The K distribution, a special case of SIRP, can be represented
as a product of the square root of a Gamma distributed scalar random variable with a Gaussian
vector. Using the model in (7.3) and assuming s? follows a Gamma distribution, the resulting zy,

will have an amplitude that follows the K distribution with the probability density function
ba+1ua

flu) = mKa—l(bu)

where I'(+) is the Euler Gamma function and K,(-) is the modified Bessel function of the second
kind of order o. The parameter « is the shape parameter for the Gamma distributed clutter power

term s2

. For K clutter, this shape parameter, controls the deviation from Gaussian disturbance.
For example, as « approaches infinity, K distribution approaches the Gaussian distribution.

In the simulation, we choose N = 16 (pulse-channel product) with sample support K = 50. We
evaluate the detection performance for various shape parameters using the three covariance matrix
estimators, namely the ML estimator, SCM, and N-SCM. The output signal to noise ratio (SNR)
is defined as [50]:

SNR = 10logyq |a>*vE="1v

Fig. 7.1 gives the probability of detection as a function of SNR for shape parameter a« = 0.2. In
the figure we also plot the performance of the NMF test of (7.2) using the true covariance matrix
which provides an upper bound on all three adaptive forms of the NMF. While numerically we can
verify that ML covariance matrix is better that the other two covariance estimators, the advantage
over the N-SCM is negligible in this case. In Fig. 7.2 we plot the probability of detection as a
function of SNR for shape parameter oo = 4. The performance advantage of the ML estimator can
be noticed. To further illustrate this, in Fig. 7.3, we fix the SNR at 10dB and plot the probability
of detection against the shape parameter for the three covariance matrix estimators. Clearly from
the figure, while the performance difference between ML and N-SCM at small shape parameter
is negligible, as « gets larger, the performance advantage becomes noticeable. Therefore, the ML
estimate provides some robustness on the detection performance with regard to the variation of the

shape parameter.
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Figure 7.1: Probability of detection using the NMF as a function of SNR for different
covariance matrix estimators. The shape parameter for the K clutter is 0.2

and the false alarm rate is 103.
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Figure 7.2: Probability of detection using the NMF as a function of SNR for different
covariance matrix estimators. The shape parameter for the K clutter is 4

and the false alarm rate is 1073.
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Appendix A

List of Publications

Journal Publications

1. B. Liu, B. Chen, and J.H. Michels, “A GLRT for multichannel radar detection in the presence
of both SIRP clutter and additive white Gaussian noise,”, submitted to the IEEE Trans. Signal

Processing, October, 2003, under revision.

2. B. Chen, P.K. Varshney, and J.H. Michels, “Adaptive CFAR Detection For Clutter-edge
Heterogeneity Using Bayesian Inference,” IEEE Trans. Aerospace and Elec. Sys., vol. 39,
no. 4, Oct. 2003.

3. T. Kasetkasem and P.K. Varshney, “Statistical characterization of clutter scenes based on a
Markov random field model,” IEEE Trans. Aerospace and Electronic Systems, vol. 39, pp.
1035 -1050, Jul. 2003.

4. B. Chen and P.K. Varshney, “A Bayesian sampling approach to decision fusion,” IEEE Trans.
Signal Processing, vol. 50, no. 8, pp. 1809-1818, August 2002.

Refereed Conference Proceedings

1. T. Kasetkasem and P.K. Varshney, “Clutter patch identification based on Markov random
field models” Proc. 2002 IEEE Radar Conference, Long Beach, CA, April 2002, pp. 464 -470.

2. B. Liu, B. Chen, and J.H. Michels, “A GLRT for radar detection in the presence of non-
Gaussian clutter and additive white Gaussian noise,” Proc. 2002 IEEE Sensor Array and
Multichannel Signal Processing Workshop, Rosslyn, VA, Aug 2002, pp. 87-91.

3. B. Chen, P.K. Varshney, and J.H. Michels, “Adaptive CFAR detection via hierarchical model
based parameter estimation,” Proceedings of the 35th Asilomar Conference on Signals, Sys-
tems, and Computers, Pacific Grove, CA, November 2001, pp. 1396-1400.
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tional Conference on Information Fusion, Montreal, Canada, August 2001.
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